PROCEDURES FOR
THE SUBSTATE ALLOCATION OF LWIA FUNDS FOR:
DISLOCATED WORKER EMPLOYMENT AND TRAINING ACTIVITIES,
ADULT EMPLOYMENT AND TRAINING ACTIVITIES,
AND YOUTH ACTIVITIES
UNDER TITLE 1-B OF
THE WORKFORCE INVESTMENT ACT
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Part 1: General Overview</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 2: Dislocated Worker Allocations</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 3: Adult Allocations</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 4: Youth Allocations</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Appendices

A: Schematic of WIA Funding Streams .. 33

B: Sample WIA Allotment from F&GS .. 37

C: Sample Transfer Memo (from EIS to WIA) .. 41

D: Sample of LWIA Funding Points .. 45

E: List of Spreadsheets, Programs and Files .. 49

F: Dislocated Workers Allocations Flow Chart .. 53

G: Adult and Youth Allocations Flow Chart ... 57

H: Final Adult, Youth & Dislocated Workers Allocations Flow Chart 61

I: Agricultural Employment Loss Formula Alternatives 65

J: Detailed Instructions for Agricultural Employment Loss 69
 J1: INTRODUCTION .. 71
 J2: CROPPRO.XLW ... 77
 J3: CROPPRO.XLW Layouts .. 83
 J4: CROPPRO.XLW Macros Overview ... 89
 J5: RANCHPRO.XLS ... 91
 J6: AGEMP.XLS .. 93

K: Detailed Instructions for WRAPMT.XLS ... 95

L: Detailed Instructions for ALLOCATIONSMT.XLS ... 97

M: Hold Harmless Instructions (for Adult and Youth Allocations) 99

N: Economically Disadvantaged Population Documentation 101

O: CROPPRO.XLW Macros ... 103

P: Workforce Investment Act of 1998 (Sections 126 – 134) 113
Part 1:
Purpose and General Overview
Part 1: - Purpose and General Overview

Purpose

The purpose of this document is to provide instructions on how the funds distributed to Virginia under the Workforce Investment Act will be distributed among the Local Workforce Investment Areas (LWIAs) for authorized services as delineated in sections §126-134 of the act. This document is prepared for Program Year 2006 (for which most of the raw data is for the period July 2004 through June 2005). For future years, dates and file names which contain dates should be adjusted accordingly.

General Overview

For the Virginia Employment Commission there are three separate funding streams involved in the allocation process:

1. Dislocated Worker Employment and Training Activities
2. Adult Employment and Training Activities
3. Youth Activities.

➢ See Appendix A for a schematic of the three WIA funding streams to be allocated.

The Employment and Training Administration (ETA) of the Department of Labor (DOL) distributes funds to the states for each of the three funding streams based on formulas specified in the Act. When the Finance and General Services (F&GS) Division of the Virginia Employment Commission (VEC) receives notice from ETA of the amounts to be allocated for Virginia, the EIS Division is responsible for allocating the shares among the LWIAs according to the specifications of the Act.

➢ See Appendix B for a sample of the F&GS allotment worksheet.

When all of the data entry and other processes have been completed and the LWIA allocations for each funding stream have been computed and checked, the “EIS-Final” allocations are forwarded by the Director of EIS to the director of the WIA Division for approval.

➢ See Appendix C for a sample of the transfer memo from EIS to WIA.

Because the WIA Division also wants the amount that each city/county qualifies for, and because the data used is available at the city/county level, the “EIS-Final” allocations are developed from the bottom up (city/county allocations add to LWIA allocations which, in turn, add to the State allocation). Individual cities and counties do not receive the funds and city/county allocations are not required under the law, however the calculations are valuable because they aid the EIS Division, the WIA Division and WIB (Workforce Information Board) directors in explaining fluctuations in the allocations from year to year and in identifying errors.

Most of the computations and processes used to convert the raw data for the various factors of the three funding streams into allocation percentages and amounts are accomplished in Excel spreadsheets. Only the CROPPRO.XLW workbook contains macros (and those should probably be not be run by someone unfamiliar with the process), but many of the spreadsheets contain formulas that link to other worksheets within the same workbook and even across
workbooks. TSO is used to download data for four of the seven Dislocated Worker factors (initial claims, final claims, long term unemployment, and declining industries), and FoxPro is used in converting another of the Dislocated Worker factors (continued claims). The TSO steps cannot be converted to Excel, but the FoxPro program can be converted to Excel. The conversion would involve creating a look-up table to convert LAUS area codes to FIPS codes and then summing the continued claims data by FIPS before importing the data into the WRAPMT.XLS workbook.

- See Appendix E for a complete list of the spreadsheets, programs and files used in the allocation process.

In general the workbooks used in the allocation procedures contain multiple worksheets. The worksheets within a workbook are usually processed in a left to right manner. The initial worksheet(s) may contain historical data that never (or seldom) changes and is used as the base in the computations. Following the historical worksheets, are usually one or more data entry worksheets containing data for the current cycle as well as factor weights (which will seldom change) and the sub-state allocation amount for the appropriate program. Following the data entry worksheet (which usually contains some formulas) will usually be a “values” worksheet (this is simply a copy and paste - as values- process). The next worksheet will probably be a "sort" worksheet where, after the copy and paste is repeated, the data can be sorted by the appropriate columns. Following the "sort" worksheet will be one or more worksheets composed primarily of formulas. There may be a final “export” worksheet that is created by another copy and paste operation to create the inputs for another workbook.

For the Program Year 2006 allocations (developed beginning in the fall of 2005) all necessary files (except the download files) are kept in the EDWAA\PROGYEAR2006 subdirectory of I:\My Documents. The download files are downloaded to the EXTFILES\EDWAA subdirectory of I:\My Documents and then imported into the EDWAA\PROGYEAR2006 subdirectory. When allocations are completed in the spring, the current PROGYEAR2006 subdirectory is copied into the OldEDWAAS subdirectory of I:\My Documents. In the fall the EDWAA\PROGYEAR2006 is renamed to EDWAA\PROGYEAR2007 and the process is begun for a new round of allocations.

It is extremely important to understand how all of the pieces fit together before beginning the allocations process for a new year. Resource persons are: Mike Thacker, Larry Robinson, and Veronica Sadler of EIS, Brian Davis or Joe Holicky of WIA, and Mark Watson of F&GS.
Part 2:
Dislocated Worker Allocations
Part 2: - Dislocated Worker Allocations

A: Overview of Dislocated Worker Allocations

States are required to reserve up to 25% of Dislocated Worker monies for Rapid Response initiatives and up to 15% for the Governor’s Discretionary Statewide initiatives. Since Virginia reserves both at the maximum level, 60% remains to be distributed to the LWIAs. Because a specific distribution formula is not specified in the law, the WIA Division may adjust the factor weights but may not modify the factors. The following factors are specified in Section 133(b)(2)(B)(i) & (ii):

1. insured unemployed data;
2. unemployment concentrations
3. plant closings and mass layoff data;
4. declining industries data
5. farmer-rancher economic hardship data; and
6. long-term unemployment data.

B: Virginia’s Dislocated Worker Funding Formula

Pursuant to these requirements and until amended by the Virginia Workforce Council or by the Governor, Virginia’s mandatory sub-state allocations for Dislocated Workers shall be based on the following weighted factors:

1. Continued Claims – (20 percent):
 Relative number of an area’s unemployment insurance claimants from the Commonwealth’s regular unemployment compensation system as compared to the sum of all areas for Virginia.

2. Excess Unemployment – (10 percent):
 Relative number of an area’s unemployed above the 4.5 percent unemployment rate level as compared to the sum of all areas.

3. Initial Claims – (10 percent):
 Relative number of an area’s Initial unemployment insurance claimants as compared to the sum of all areas.

4. Declining Employment – (20 percent)
 Relative number of an area’s employment losses in those industries (two digit North American Industry Classification System Sectors) which experienced a decline in annual (July through June) employment over the most current five year period (as determined by QCEW data derived from unemployment insurance tax records) as compared to the sum of all areas.
Part 2: Dislocated Worker Allocations

(5) Agricultural Employment Loss – (5 percent)

Relative estimated number of an area’s agricultural workers lost, if applicable, since the 1982 (or an updated census) Census of Agriculture (using the crop and livestock production and prices proxy) as compared to the sum of all areas.

(6) Long Term Unemployed – (15 percent)

Relative number of an area’s regular unemployment compensation claimants receiving benefits for greater than fifteen weeks as compared to the sum of all areas.

(7) Final Claims – (20 percent)

Relative number of an area’s claimants receiving final payments under the regular unemployment compensation system as compared to the sum of all areas.

Using the above factors and weights as well as the Sub-State Allocation for Dislocated Workers (DW$), the percentage of Dislocated Worker Funding (DW%C) to which a city/county is entitled becomes:

\[DW%_C = (0.2) \times (RSCC) + (0.1) \times (RSEU) + (0.1) \times (RSIC) + (0.2) \times (RSDE) + (0.05) \times (RSAEL) + (0.15) \times (RSLTU) + (0.2) \times (RSFC). \]

The allocation amount (DW$C) for a city/county becomes:

\[DW$C = \sum_{c=1}^{n} (DW%_C \times DW$) \]

The workbook WRAPMT.XLS is the spreadsheet that converts the raw data for the seven factors into the actual Dislocated Worker Allocation. The same computation is made at the LWIA level and the sum of the DW Allocations for cities/counties in a LWIA is compared to the calculated LWIA total. Those numbers should agree (within rounding error). Differences in rounding are usually modified at the city/county level so that the city/county allocations add to the LWIA allocations (which, in turn, add to the Sub-State allocation). If the LWIA allocations do not add to the Sub-State allocation, then one of the LWIA allocations must be rounded up/down before the city/county adjustments are made.

➢ See Appendix K for details of the WRAPMT.XLS spreadsheet.

With the exception of the Consumer Price Index and agricultural production and prices, all data required for funding computation are available from the EIS Division of the VEC. The Consumer Price Index is available from the BLS website (http://www.bls.gov/cpi/home.htm). Agricultural production and price data are available from the Annual Bulletin on the U. S. Department of Agriculture web site (http://www.nass.usda.gov/va/)
Part 2: - Dislocated Worker Allocations

C: General Instructions for the Computation of Sub-State Dislocated Worker Allocations

The calculation of all but one of the sub-state allocations shall utilize the most recently available twelve months (July through June) of data for the specific factor. Agricultural Employment Loss data, will also utilize the most recently available data on a calendar year basis.

The EIS Division of the VEC shall compile the necessary data annually and shall compute the percent of State LWIA as well as by city and county. The factor weights (as determined by the WIA division) shall be multiplied by the computed percentages to produce weighted city/county percentages by factor. The resulting weighted city/county percentages by factor shall be summed across the seven factors producing a single city/county percent-of-State figure. The city/county percents-of-State, shall then be multiplied by the dollar amount available for distribution for Dislocated Workers (as received from F&GS – see appendix B). The city/county allocations shall be summed to the LWIA level and then to the State level. After rounding the allocations to the nearest dollar and then adjusting the rounded figures so that they add to the original allocation total, the “EIS-Final” allocations for Dislocated Workers shall be provided to the WIA Division of the VEC by March 31 every year.

➢ See appendix C for a sample of the transfer memo.

Allocations for Dislocated Workers are based on the seven factors specified in the Law (weights are assigned by the WIA Division of the VEC). The original source of much of the data is the UI Benefits system. Employment in Declining Industries comes from QCEW data (5 year span) and Agricultural Employment Loss is calculated from data obtained from USDA. The raw data for the 7 factors is used as input for the master worksheet WRAPMT.XLS which calculates percents and dollar allocations.

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>WEIGHT</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Continued UI Claims</td>
<td>20%</td>
<td>UI (through LAUS UNIT)</td>
</tr>
<tr>
<td>2 Initial UI Claims</td>
<td>10%</td>
<td>UI (VECEDWAA)</td>
</tr>
<tr>
<td>3 Long Term (15+ Weeks) UI Claims</td>
<td>15%</td>
<td>UI (VECEDWAA)</td>
</tr>
<tr>
<td>4 Final UI Claims</td>
<td>20%</td>
<td>UI (VECEDWAA)</td>
</tr>
<tr>
<td>5 Excess Unemployment</td>
<td>10%</td>
<td>UI, LAUS & EOR</td>
</tr>
<tr>
<td>6 Employment in Declining Industries</td>
<td>20%</td>
<td>QCEW (VECEOR20)</td>
</tr>
<tr>
<td>7 Agricultural Employment Loss</td>
<td>05%</td>
<td>USDA – WWW.NASS.USDA.GOV/VA/</td>
</tr>
</tbody>
</table>

Continued Claims:

Data are usually supplied by LAUS in Excel or Text format. There is a FoxPro program (doncntclms.prg) in the EDWAA directory that will read the text file into a DBF and export to Excel. Remember to change dates (etc.) before running the program. Clms_0405.XLS is used as an input for WRAPMT.XLS.
Part 2: - Dislocated Worker Allocations

Initial Claims, Final Claims, and Long Term Unemployment:
Mainframe job VECEDWAA creates a file from UI system based on from/to year & month parameters supplied by the user. The user downloads the file (VECEDWAA.TXT) and converts it to the Excel file VECEDWAA.XLS, which is imported to WRAPMT.XLS.

Excess Unemployed:
Unemployment data (revised) for period July through June is supplied by LAUS in Excel format (PY0405_LAUS.XLS). ASU_EXCESS_WORKSHEET_PY2006.XLS starts with that data and calculates the number of unemployed (by FIPS & LWIA) who are above 4.45% unemployment. (The ASU_EXCESS_WORKSHEET_PY2006.XLS is also used to collect ASU data for the Adult & Youth allocations.)

Employment in Declining Industries:
Mainframe job VECEOR20 computes the decline in employment by FIPS and NAICS sector (2 digit) between the current 4-quarter (July through June) average and the 4-quarter average of 5 years ago. If there is an increase in a NAICS sector, the value is set to 0. The output file is downloaded to VECEOR20.TXT and imported to Excel (VECEOR20.XLS). After checking the file for reasonableness, the NAICS sector data is deleted and the total for each FIPS is imported to WRAPMT.XLS.

Agricultural Employment Loss
The goal is to produce an estimate of Employment losses in Agriculture since the base year (currently 1982). On the USDA web site (www.nass.usda.gov/va/) access the Annual Bulletin (2004 for PY2006). Print PDF files for the following:

A) General
 1. Rankings of Principal Crops & Livestock

B) Field Crop County Estimates
 1. Corn for Grain & Corn for Silage
 2. Soybeans
 3. Wheat
 4. Barley
 5. Peanuts & Cotton
 6. Tobacco

C) Fruits
 1. Apple & Peach Production, Price & Utilization
 2. Apples: Commercial Production by County

D) Livestock County Estimates
 1. Cattle & Milk Cows
 2. Sheep & Hogs

E) Flue, Burley & Sun tobacco distribution Maps

F) Fire Tobacco, Peanuts & Cotton Distribution Maps
Part 2: - Dislocated Worker Allocations

Data from A, B & C are used as input to CROPPRO.XLS while data from A & D are used as input to RANCHPRO.XLS.

Outputs from CROPPRO.XLS and RANCHPRO.XLS along with the current annual CPI from BLS are used as inputs for AGEMP.XLS. CROPPRO.XLS & RANCHPRO.XLS calculate the percent of state for each “crop” by FIPS and AREA and apply the percentages to the Statewide Cash Receipts for each “crop” to arrive at an estimate of production by county. The percentage decline in production is applied to the 1982 employment to estimate the decline in employment – which is then imported to WRAPMT.XLS.

- See Appendix J for detailed instructions for the Croppro, Ranchpro & Agemp workbooks.

D: Technical Notes on the Dislocated Worker Allocation Factors

(1) Continued Claims (Average Number of Unemployment Insurance Claimants):

This Factor is calculated by using data from the Intrastate Continued Weeks Claimed Report (VECBR551) for the July through June period as supplied by the LAUS unit of EIS. The revised (previous month) figures are totaled by county and city and then divided by twelve to determine the annual average.

The regular unemployment compensation claimants (state UI only) are summed, using the total number of claimants (including those with earnings). Continued weeks claims are taken monthly from a sample week that includes the 12th of the month. There are often a few cases in which place of residence is specified as Virginia but either no county or city code is specified, or a code is specified that does not correspond to a valid county or city code. These claimants will not be used in the calculations.

The LAUS unit usually provides a file that contains the annual average data by city and county. If the file is in Excel format, that file can be used as-is. If the file is in Text format, the LAUS area codes need to be converted to FIPS codes before converting the file to Excel. If the file contains data for South Boston or Clifton Forge, such data should be added to the totals for Halifax County and Alleghany County, respectively, and then replaced with zero.

(2) Excess Unemployment (Average Number of Unemployed Above the 4.5% Unemployment Rate):

This number is calculated from the average annual (total annual may be used if it is used consistently) revised monthly labor force and unemployed data supplied by the LAUS unit. For each county or city that has an unemployment rate of at least 4.5 percent, the excess unemployed is determined by multiplying 0.0445 times the civilian labor force and subtracting the result from the number of unemployed. This number is rounded to the nearest whole number.
Part 2: - Dislocated Worker Allocations

The raw data received from LAUS (sorted by LWIA and FIPS) can be copied onto the IMPORT worksheet of the **ASU_EXCESS_PY0405.XLS** (for Program year 2006) spreadsheet. Check for the South Boston/Clifton Forge data and make any necessary revisions. The LAUS data should be in LWIA and FIPS code order, but it does not contain total lines for the LWIAs. Because the LAUS data and the IMPORT worksheet do not contain LWIA total lines, copy the data in columns D, E & F (Civilian Labor Force, Employed, and Unemployed) **in groups by LWIA** over to columns D, E, & F of the MAIN worksheet of the **ASU_EXCESS_PY_0405.XLS** spreadsheet. Column G recalculates the unemployment rate, showing five decimal places. Column L calculates the minimum number of unemployed in the city/county necessary to qualify for Excess Unemployment. Column N compares the minimum number to the actual number and calculates the excess.

Before the final Excess unemployed number can be computed, ASU data (by LWIA) need to be copied into columns H, I & J of the MAIN worksheet (this step may not be necessary under the new LAUS methodology that determines ASUs at the city/county level instead of the census tract level). Because the old (and possibly future) LAUS methodology looked at concentrations of unemployment within a city/county, it was possible that a city/county might have an unemployment rate slightly above 4.5% producing a small number of Excess Unemployed while also containing a part of a larger ASU (with a much higher unemployment rate) that produced larger number of Excess Unemployed in the smaller area. In such a situation the city/county Excess Unemployed figure would be the larger of the two numbers. Column K recalculates the unemployment rate for the ASU data to 5 decimal places. Column M calculates the minimum number of unemployed in the ASU portion of the city/county necessary to qualify for Excess Unemployment. Column O compares the minimum number to the actual number and calculates the excess. Finally column P compares column N (FIPS Excess) to column O (ASU excess) and selects the larger number.

(3) **Initial Claims** (Average Number of Initial Claims for U.I. Compensation):

Virginia uses Initial Claims as a proxy for Mass Layoff Claims because Continued Claims for Mass Layoff events are not readily available. Although the proxy does not reflect the duration of the claims, the Initial Claims proxy includes the first Mass Layoff claims. The proxy also captures those Initial Claims that may result from but are not a part of the Mass Layoff. Annual initial claimant data is obtained from mainframe job **VECEDWAA**.

VECEDWAA produces an output text file that contains initial claims (as well as final claims and long-term [15+ weeks] unemployment) data by area. A TSO job (c:\progra~1\person~1\private\vecedwaa.srl) exists to download the output file to a text file. The Text file is then converted into Excel and saved as **VECEDWAA.XLS**. After checking for South Boston or Clifton Forge data, inspecting the data for reasonableness, and deleting the industry specific rows, the data in the "INITIALS" column of **VECEDWAA.XLS** is ready to be copied into **WRAPMT.XLS**.
Part 2: - Dislocated Worker Allocations

(4) Declining Industries (Number of Employees Lost in NAICS Sectors):

Data is obtained from job VECEOR20. Average annual employment by NAICS Sector is calculated by summing the monthly employment data from four quarters of QCEW data. All NAICS Sectors as defined in the North American Classification System 2002 are used. Employment figures include government (except military) as well as private wage and salary employment covered by the unemployment insurance system. Although agricultural production is included in the NAICS structure, many farms include non-wage and salary employment or have too few employees to be included in the unemployment insurance system.

The average annual NAICS Sector employment figures by City/County are compared to the figures of five years earlier. For those Sectors in which the more recent figure is smaller, the loss is calculated and then summed for all sectors in which losses occurred.

VECEOR20 produces an output text file that contains the current employment, five-year-old employment, and the employment decline for declining industries by area. A TSO job (c:\progra~1\person~1\private\veceor20.srl) exists to download the output file to a text file. The Text file is then converted into Excel and saved as VECEOR20.XLS. After checking for South Boston or Clifton Forge data, and inspecting the data for reasonableness, delete the industry specific rows.

(5) Ag Emp Loss (Number of Agricultural Workers Lost):

The declining industries factor (#4) does not truly cover agricultural workers due to the number of non-covered workers as discussed above. Until adequate farmer-rancher data is developed and produced, a proxy for employment loss will be used. This measure will compare employment from the 1982 Census of Agriculture (or an update) to a proxy for employment in the most recent year for which agricultural production and prices are available. Employment in the most recent year (MRY) shall be estimated using the following procedure:

1. Deflate the estimated value of production (Est Val Prod) for the MRY and the Est Val Prod from the Census of Agriculture for the Census Year (CY) by their respective Consumer Price Index (CPI) levels.
2. Divide the deflated Est Val Prod(MRY) by the deflated Est Val Prod (CY).
3. Multiply the resulting proportion by the employment in the census year.

\[
\text{Employment}_{(MRY)} = \text{Employment}_{(CY)} \times \frac{\text{Est Val Prod}_{(MRY)}}{\text{CPI}_{(MRY)}} + \frac{\text{Est Val Prod}_{(CY)}}{\text{CPI}_{(CY)}}
\]

The estimated value of production for a county/city is calculated as the sum of county commodity production (County Comm Prod) times the state average price (State Pr) for each agricultural good (G) produced in the county:
Part 2: - Dislocated Worker Allocations

\[\text{Est Val Prod} = \sum_{G=1}^{n} (\text{County Comm Prod}_{(G)} \times \text{State Pr}_{(G)}) \]

The state estimated value of production is the sum of all county/city (C) estimated values of production:

\[\text{State Est Val Prod} = \sum_{C=1}^{n} \text{Est Val Prod}_{C} \]

- See Appendix J for a discussion of available alternatives for computing Agricultural Employment Loss.
- See Appendix I for detailed instructions on how to use the Annual Bulletin data to derive a proxy for agricultural employment loss.

(6) **Long Term Unemployed** (Average Number of Claimants Receiving Benefits for Greater than Fifteen Weeks):

The annual number of claimants (by county/city) receiving unemployment benefits for greater than 15 weeks is obtained from job **VECEDWAA**. All claimants who have received benefits for at least 15 weeks during the year are included whether the benefits were received benefits for 15 consecutive weeks or in two or more distinct periods. Those who are still drawing benefits after 15 weeks as well as those who have exhausted after 15 weeks are counted.

VECEDWAA produces an output text file that contains long term unemployment data (as well as initial claims data and final claims data) by FIPS area. A TSO job (c:\progra~1\person~1\private\vecedwaa.srl) exists to download the output file to a text file. The Text file is then converted into Excel and saved as **VECEDWAA.XLS**. After checking for South Boston or Clifton Forge data, and inspecting the data for reasonableness, the data in the “15+ WKS” column of **VECEDWAA.XLS** is ready to be copied into the **WRAPMT.XLS** spreadsheet.

(7) **Final Claims** (Average Number of Claimants Receiving Final Payments):

The number is also obtained from job **VECEDWAA**. Only those claimants who have exhausted their benefits are included. Since claimants can be eligible for a varying number of weeks, this measure can be misleading and needs to be used in conjunction with the previous measure (15+ Weeks). A claimant who is eligible for only three weeks and who exhausts those benefits is included in Final Payments, while a claimant who is eligible for twenty-six weeks and is still drawing benefits after twenty-four weeks is excluded. The 15+ weeks measure, however, would exclude the three weeks claimant and include the twenty-four weeks claimant.

VECEDWAA produces an output text file that contains final claims (as well as initial claims and long term unemployment) data) by FIPS area. A TSO job (c:\progra~1\person~1\private\vecedwaa.srl) exists to download the output file to a text
Part 2: - Dislocated Worker Allocations

file. The Text file is then converted into Excel and saved as VECEDWAA.XLS. After checking for South Boston or Clifton Forge data, and inspecting the data for reasonableness, the data in the “FINALS” column of vecedwaa.xls is ready to be copied into the WRAPMT.XLS spreadsheet.

All Factors

In no case shall a locality factor percent value (which are assigned in the ST PCTS worksheet of the WRAPMT.XLS workbook) be less than zero. Assignment of factor percent values for each locality (L) for a given factor is determined by the ratio of the locality value to the total State (S) value:

\[
\text{Factor\% Value} = \frac{\text{Value}_{(L)}}{\text{Value}_{(S)}}
\]

The State factor percent value is the sum of the factor percent values of all localities:

\[
\text{Value}_{(S)} = \sum_{L=1}^{n} \text{Value}_{(L)}
\]

The total funding percentage for each area (which is determined in the WTD PCTS worksheet of the WRAPMT.XLS workbook) is the sum of the locality factor percent value times the factor weight (from the WEIGHTS worksheet of the WRAPMT.XLS workbook) for each factor (F):

\[
\text{Funding\%} = \sum_{F=1}^{n} (\text{Factor \% Value}_{(F)} \times \text{Factor Weight}_{(F)})
\]
Part 3:
Adult Allocations
Part 3: - Adult Allocations

A: OVERVIEW OF ADULT ALLOCATIONS

Under Section 128[a][1] of the WIA act States may reserve up to 15% of the statewide allocation for Adults (ages 22 through 72, inclusive) to be used for Statewide Activities, with the remaining 85% of the amount to be distributed among the LWIAs. A specific distribution formula is specified under the WIA Act for Adult Employment and Training Activities (Section 133[b][1][A][i]). The act contains a further requirement (the “Hold Harmless provision) in the Act (Section 133[b][2][A][ii]) that no LWIA shall receive less than 90 percent of that LWIAs average relative share of Adult funding for the preceding two years.

Three factors and their respective weights are specified in the Act for Adults:

1) Relative number of an area’s unemployed persons in Areas of Substantial Unemployment (6.5% or higher) compared to the sum of all areas - [33⅓%]

2) Relative number of an area’s Excess Unemployed (unemployment rate of at least 4.5%) compared to the sum of all areas - [33⅓%]

3) Relative number of an area’s Disadvantaged Adults compared to the sum of all areas) - [33⅓%]

B: Virginia’s Adult Funding Formula

Pursuant to these requirements and until amended by Congress, the Virginia Workforce Council or the Governor, Virginia’s mandatory sub-state allocations for Adults shall be based on the following weighted factors:

1) Unemployment in Areas of Substantial Unemployment – (33⅓ percent):
 The relative number of unemployed persons in an ASU within a LWIA compared to the total number of unemployed persons in ASUs in Virginia; ASU data is computed annually by LAUS (under BLS guidelines) using revised data for the July – June time period. To qualify as an ASU an area (or group of contiguous areas) must have a minimum population (10,000) and an average unemployment rate of at least 6.45%. Previous (and possibly future) LAUS methodology allowed ASUs to be determined by Census Tract; however, current LAUS methodology does not allow the computation to be made below the city/county level.

2) Excess Unemployment – (33⅓ percent):
 The relative number of excess unemployed persons within a LWIA compared to the total number of excess unemployed persons in Virginia; this data is computed annually by EOR from data supplied by LAUS. EOR computes the initial Excess Unemployed (using revised LAUS data for the July - June time period and following BLS guidelines) sometime between September and December of each year. After the ASU data is available from LAUS the final Excess Unemployed data is calculated by EOR. A city/county/LWIA qualifies for Excess
Part 3: - Adult Allocations

Unemployment funding if the unemployment rate in the area is 4.5% or higher. Under the old LAUS methodology if some (or all) of the Census Tracts within a city/county were part of a larger ASU, but the unemployment rate in none of the Census Tracts reached the 4.5 level, that city/county would qualify for ASU funding but not for Excess Unemployment funding. Computations are done at the city/county level and then summed to LWIA totals.

(3) Economically Disadvantaged Adults – (33⅓ percent):

The relative number of disadvantaged adults in the LWIA compared to the number of disadvantaged adults in Virginia; this data is obtained from the Census. A special tabulation of 2000 Census data was compiled by Social Policy Research Associates. The resulting CD contains the Excel spreadsheet County.xls. This is a state-specific file that contains the required data for Economically Disadvantaged Adults.

The percentages of Adult funding, by factor, (ASU%_{C}, EU%_{C}, and EDA%_{C}) to which a city/county is entitled are based on the area’s relative share of each factor:

\[
\begin{align*}
\text{ASU}\%_{C} &= \text{RSASU}_{C} \\
\text{EU}\%_{C} &= \text{RSEU}_{C} \\
\text{EDA}\%_{C} &= \text{RSEDA}_{C}.
\end{align*}
\]

Using the above factors and weights as well as the Sub-State Allocation for Adults (A$), The amount of Adult funding, by factor, which shall be allocated to a city/county is calculated as:

\[
\begin{align*}
\text{ASU}$_{C} &= A$ \times \text{ASUWT} \times \text{ASU}\%_{C} \\
\text{EU}$_{C} &= A$ \times \text{EUWT} \times \text{EU}\%_{C} \\
\text{EDA}$_{C} &= A$ \times \text{EDAWT} \times \text{EDA}\%_{C}.
\end{align*}
\]

Because the weights for the three factors are all the same (33⅓%), the total amount of money to be allocated for each of the three factors is equal (\text{ASU}$ = \text{EU}$ = \text{EDA}$). At the city/county level however the amounts will differ because each area has a different relative share of each factor. The total amount of Adult funding for a city/county (A$_{C}$) then becomes:

\[
A$_{C}$ = \text{ASU}$_{C} + \text{EU}$_{C} + \text{EDA}$_{C}
\]

By substituting L (LWIA) for the C (city/county) in the above formulas, LWIA allocations can be calculated. The following two formulas are then used to verify that the calculations are correct.

\[
A$_{L}$ = \sum_{c=1}^{n} (\text{ASU}$_{C} + \text{EU}$_{C} + \text{EDA}$_{C})
\]

\[
A$ = \sum_{c=1}^{n} (\text{ASU}$_{C} + \text{EU}$_{C} + \text{EDA}$_{C}) = \sum_{L=1}^{17} (\text{ASU}$_{L} + \text{EU}$_{L} + \text{EDA}$_{L}).
\]
Part 3: - Adult Allocations

The workbook **ALLOCATIONSMT.XLS** is the spreadsheet that converts the raw data for the three factors into the actual Adult allocation. When the computations have been made at the city/county and LWIA level and the sum of the Adult allocations for cities/counties in a LWIA is compared to the calculated LWIA total, those numbers should agree (within rounding error). Differences in rounding are usually modified at the city/county level so that the city/county allocations add to the LWIA allocations (which, in turn, add to the Sub-State allocation). If the LWIA allocations do not add to the Sub-State allocation, then one of the LWIA allocations must be rounded up/down before the city/county adjustments are made.

- See Appendix L for details of the ALLOCATIONSMT.XLS spreadsheet.

With the exception of the Economically Disadvantaged counts, all of the data required for these funding computations are available from the EIS Division of the VEC.

- See Appendix N for documentation of the Economically Disadvantaged data.

C: General Instructions for the Computation of Sub-State Adult Allocations

The calculation of two of the three sub-state allocations shall utilize the most recently available twelve months (July through June) of data for the specific factor. Economically Disadvantaged data will also utilize the most recently available data on a calendar year basis. Because the source for ED data is the Census and because there is no current method to project the data from the Census year, the data is only updated every ten years.

The EIS Division of the VEC shall compile the necessary data annually and shall compute the percent of State by LWIA as well as by city/county. The factor weights (as specified in the law or modified by the appropriate authorities) shall be multiplied by the computed percentages to produce weighted city/county percentages by factor. Unlike Dislocated Workers where the weighted city/county percentages by factor are to be summed across the seven factors producing a single city/county percent-of-State figure, in Adult allocations the weighted city/county factor percentages are not summed. Under the current law there are only three factors and each has the same weight; therefore, the total Sub-State allocation amount for Adults (i.e. the 65% level as received from F&GS) shall be multiplied by the factor weight (33⅓%). The resulting factor allocation amount shall then be multiplied by the weighted city/county factor percentage. The city/county factor allocation amounts shall be summed to LWIA and State totals. After rounding the allocations to the nearest dollar and then adjusting the rounded figures so that they add to the original allocation total, the “EIS-Final” allocations for Adults shall be provided to the WIA Division of the VEC by March 31 every year.

- See appendix B for a sample of the F&GS allotment worksheet.
- See appendix C for a sample of the transfer memo.
Part 3: - Adult Allocations

D: Technical Notes on the Adult Allocation Factors

1) Number of Unemployed in Areas of Substantial Unemployment

An Area of Substantial Unemployment is defined in the act (Section 132[b][1][B][III]) as “…any area that is of sufficient size and scope to sustain a program of workforce investment activities carried out under this subtitle and that has an average unemployment of at least 6.5% for the most recent 12 months, as determined by the Secretary. For the purposes of this sub-clause, determinations of areas of substantial unemployment shall be made once each fiscal year.”

The LAUS unit, following BLS guidelines, defines an ASU as an area or group of contiguous areas that, combined, have a calculated unemployment rate of at least 6.45% and that have a minimum population of at least 10,000. LAUS determines which areas qualify as ASUs in the fall of the year using the revised July through June unemployment data.

Under the old BLS & LAUS methodology the base unit for building an ASU was the Census Tract. Current methodology (which is new this year and which may be modified) uses the city/county as the base unit. The old methodology allowed for a portion of a city/county, which met the unemployment and population standards to qualify for ASU funding even though the whole city/county did not qualify. Using the new methodology the entire city/county must meet the unemployment and population standards (or be a member of a group of contiguous cities/counties that, when combined, meet the standards).

Under the old methodology when unemployment in the State was high, several complete LWIAs might qualify as ASUs, while parts of several others qualified to varying degrees. Even with low unemployment there were usually parts of several LWIAs that qualified as an ASU. Under the new methodology, there will be more cases where a LWIA qualifies for no ASU funding.

2) Number of Excess Unemployed

Excess Number is defined in Section 132[b][1][B][v][V] of the act. “The term ‘excess number’ means, used with respect to the excess number of individuals within a State, the higher of:

(aa) the number that represents the number of unemployed individuals in excess of 4.5 percent of the civilian labor force in the State: or
(bb) the number that represents the number of unemployed individuals in excess of 4.5 percent of the civilian labor force in areas of substantial unemployment in such State.”

By replacing the word “State” with the term “city/county” in the above definition, the EOR unit computes the excess unemployed in part (aa) of the definition from the July through June unemployment data supplied by LAUS (usually on an Excel spreadsheet: PY0405_LAUS.XLS). The excess unemployed in part (bb) of the definition is computed
Part 3: - Adult Allocations

from ASU data that is supplied in an Excel format (and usually zipped) by LAUS (LWIA01_0405complete.xls through LWIA17_0405complete.xls).

Part (aa):
This number is calculated from the average annual (total annual may be used if it is used consistently) revised monthly labor force and unemployed data supplied by the LAUS unit. For each county or city that has an unemployment rate of at least 4.5 percent, the excess unemployed is determined by multiplying 0.0445 times the civilian labor force and subtracting the result from the number of unemployed. This result is rounded to the nearest whole number.

The raw data received from LAUS (sorted by LWIA and FIPS) can be copied onto the IMPORT worksheet of the ASU_EXCESS_PY0405.xls (for Program year 2006) spreadsheet. Check for the South Boston/Clifton Forge data and make any necessary revisions. The LAUS data should be in LWIA and FIPS code order, but it does not contain total lines for the LWIAs. Because the LAUS data and the IMPORT worksheet do not contain LWIA total lines, copy the data in columns D, E & F (Civilian Labor Force, Employed, and Unemployed) in groups by LWIA over to columns D, E, & F of the MAIN worksheet of the ASU_EXCESS_PY_0405.XLS spreadsheet. Column G recalculates the unemployment rate, showing five decimal places. Column L calculates the minimum number of unemployed in the city/county necessary to qualify for Excess Unemployment. Column N compares the minimum number to the actual number and calculates the excess.

Part (bb):
Before the final Excess unemployed number can be computed, ASU data need to be copied in groups by LWIA over to columns H, I & J of the MAIN worksheet of the ASU_EXCESS_PY0405.XLS workbook. This step may not be necessary under the new LAUS methodology that determines ASUs at the city/county level instead of the census tract level. Because the old (and possibly future) LAUS methodology looked at concentrations of unemployment within a city/county, it was possible that a city/county have an unemployment rate slightly above 4.5% producing a small number of Excess Unemployed while also containing a part of a larger ASU (with a much higher unemployment rate) that produced larger number of Excess Unemployed in the smaller area. In such a situation the city/county Excess Unemployed figure would be the larger of the two numbers. Column K recalculates the unemployment rate for the ASU data to 5 decimal places. Column M calculates the minimum number of unemployed in the ASU portion of the city/county necessary to qualify for Excess Unemployment. Column O compares the minimum number to the actual number and calculates the excess.

Final Excess Unemployment:
The formula in column P compares column N (FIPS Excess) to column O (ASU excess) and selects the larger number. This is the number that is copied (as values) over to the EXPORT worksheet of the ASU_EXCESS_PY0405.XLS workbook. From there it is copied to the IMPORT worksheet of the ALLOCATIONSMT.XLS workbook.
Part 3: - Adult Allocations

3) Economically Disadvantaged Adults

Economically Disadvantaged Adult is defined in the act (Section 132[b][1][B][v][I-IV]) as a person between the ages of 22 and 72 (inclusive) who received an income, or is a member of a family that received a total family income that, in relation to family size, does not exceed the higher of: 1) the poverty line or 2) 70 percent of the lower living standard income level. The act contains a Special Rule (Section 132[b][1][B][v][V]), that stipulates that college students and the military should be excluded from the Disadvantaged count.

The Department of Labor and the Bureau of the Census have made arrangements with Social Policy Research Associates to produce a special tabulation of 2000 Census data to be used for WIA allocations. The tabulated data is contained in an Excel Spreadsheet (County.xls) that was distributed to the states via CDs. Since an update of this data is not expected until about January of 2014, the current data should be used until then.

➢ See Appendix N for the SPR documentation.

The county.xls spreadsheet is to be copied onto the countyxls worksheet of the ED_Data_Census_2000.xls workbook. The cover worksheet of the workbook contains basic instructions. The EDSums worksheet of the workbook contains formulas that copy the appropriate data (by age group) from the countyxls worksheet and then sum the data to produce the necessary totals for Economically Disadvantaged Adults and Economically Disadvantaged Youth. The EXPORT worksheet of the workbook contains the summed data that is to be manually copied and pasted (as values) from EDSums and is ready for import to the ALLOCATIONSMT.XLS spreadsheet.

In 2014 (or if an update is produced sooner), verify that the new county.xls file is in the same format (Clifton Forge data will probably have been deleted by then) and then copy the county.xls on top of the countyxls worksheet of the ED_Data_Census_2000.xls workbook.
Part 4:
Youth Allocations
Part 4: - Youth Allocations

A: OVERVIEW OF YOUTH ALLOCATIONS

Under Section 128[a][1] of the WIA Act States may reserve up to 15% of the statewide allocation for Youth to be used for Statewide Activities, with the remaining 85% of the amount to be distributed among the LWIAs. A specific distribution formula is specified under the WIA Act for Youth Employment and Training Activities (Section 128[b][2][A][i]). There is a further requirement (the “Hold Harmless provision) in the Act (Section 128[b][2][A][ii]) that no LWIA shall receive less than 90 percent of that LWIAs average relative share of Youth funding for the preceding two years.

Three factors and their respective weights are specified in the Act for Youth:

1) Relative number of unemployed persons in Areas of Substantial Unemployment (6.5% or higher) among the LWIAs - [33⅓%]

2) Relative number of Excess Unemployed (unemployment rate of at least 4.5%) among the LWIAs - [33⅓%]

3) Relative number of Disadvantaged Youth among the LWIAs - [33⅓%]

B: Virginia’s Youth Funding Formula

Pursuant to these requirements and until amended by Congress, the Virginia Workforce Council or the Governor, Virginia’s mandatory sub-state allocations for Youth shall be based on the following weighted factors:

(1) Unemployment in Areas of Substantial Unemployment – (33⅓ percent):

The relative number of unemployed persons in an ASU within a LWIA compared to the total number of unemployed persons in ASUs in Virginia; ASU data is computed annually by LAUS (under BLS guidelines) using revised data for the July – June time period. To qualify as an ASU an area (or group of contiguous areas) must have a minimum population (10,000) and an average unemployment rate of at least 6.5% (6.45% if calculated and rounded to tenths). Previous (and possibly future) LAUS methodology allowed ASUs to be determined by Census Tract; however, current LAUS methodology does not allow the computation to be made below the city/county level.

(2) Excess Unemployment – (33⅓ percent):

The relative number of excess unemployed persons within a LWIA compared to the total number of excess unemployed persons in Virginia; this data is computed annually by EOR from data supplied by LAUS. EOR computes the initial Excess Unemployed (using revised LAUS data for the July - June time period and following BLS guidelines) sometime between September and December of each year. After the ASU data is available from LAUS the final Excess Unemployed data is calculated by EOR. A city/county/LWIA qualifies for Excess
Part 4: - Youth Allocations

Unemployment funding if the unemployment rate in the area is 4.5% (4.45% if calculated and rounded to tenths) or higher. Under the old LAUS methodology if some (or all) of the Census Tracts within a city/county were part of a larger ASU, but the unemployment rate in none of the Census Tracts reached the 4.5 level, that city/county would qualify for ASU funding but not for Excess Unemployment funding. Computations are done at the city/county level and then summed to LWIA totals.

(3) Economically Disadvantaged Youth – (33⅓ percent):

The relative number of disadvantaged adults in the LWIA compared to the number of disadvantaged adults in Virginia; this data is obtained from the Census. A special tabulation of 2000 Census data was compiled by Social Policy Research Associates. The resulting CD contains the Excel spreadsheet County.xls. This is a state-specific file that contains the required data for Economically Disadvantaged Youth.

The percentages of Youth funding, by factor, (ASU%\textsubscript{C}, EU%\textsubscript{C}, and EDA%\textsubscript{C}) to which a city county is entitled are:

\[
\begin{align*}
\text{ASU}\%\textsubscript{C} &= \text{RSASU}_C \\
\text{EU}\%\textsubscript{C} &= \text{RSEU}_C \\
\text{EDA}\%\textsubscript{C} &= \text{RSEDY}_C.
\end{align*}
\]

Using the above factors and weights as well as the Sub-State Allocation for Youth (Y\$), the amount of Youth funding, by factor, which shall be allocated to a city/county is calculated as:

\[
\begin{align*}
\text{ASU}\$\textsubscript{C} &= A$ \ast \text{ASUWT} \ast \text{ASU}\%\textsubscript{C} \\
\text{EU}\$\textsubscript{C} &= A$ \ast \text{EUWT} \ast \text{EU}\%\textsubscript{C} \\
\text{EDA}\$\textsubscript{C} &= A$ \ast \text{EDAWT} \ast \text{EDA}\%\textsubscript{C}.
\end{align*}
\]

Because the weights for the three factors are all the same (33⅓%), the total amount of money to be allocated for each of the three factors is equal \(\text{ASU}\$ = \text{EU}\$ = \text{EDY}\$\). At the city/county level however the amounts will differ because each area has a different relative share of each factor. The total amount of Youth funding for a city/county \((Y\$_\textsubscript{C})\) then becomes:

\[
Y\$_\textsubscript{C} = \text{ASU}\$\textsubscript{C} + \text{EU}\$\textsubscript{C} + \text{EDY}\$\textsubscript{C}
\]

By substituting \(L\) (LWIA) for the \(C\) (city/county) in the above formulas, LWIA allocations can be calculated. The following two formulas are then used to verify that the calculations are correct.

\[
Y\$_L = \sum_{c=1}^{n} (\text{ASU}\$\textsubscript{C} + \text{EU}\$\textsubscript{C} + \text{EDY}\$\textsubscript{C})
\]

\[
Y$ = \sum_{c=1}^{n} (\text{ASU}\$\textsubscript{C} + \text{EU}\$\textsubscript{C} + \text{EDY}\$\textsubscript{C}) = \sum_{L=1}^{17} (\text{ASU}\$_L + \text{EU}\$_L + \text{EDY}\$_L).$
\]
Part 4: - Youth Allocations

The workbook **ALLOCATIONSMT.XLS** is the spreadsheet that converts the raw data for the three factors into the actual Youth Allocation. When the computations have been made at the city/county and LWIA level and the sum of the Youth allocations for cities/counties in a LWIA is compared to the calculated LWIA total, those numbers should agree (within rounding error). Differences in rounding are usually modified at the city/county level so that the city/county allocations add to the LWIA allocations (which, in turn, add to the Sub-State allocation). If the LWIA allocations do not add to the Sub-State allocation, then one of the LWIA allocations must be rounded up/down before the city/county adjustments are made.

- See Appendix L for details of the **ALLOCATIONSMT.XLS** spreadsheet.

With the exception of the Economically Disadvantaged counts, all of the data required for these funding computations are available from the EIS Division of the VEC.

- See Appendix N for documentation of the Economically Disadvantaged data.

C: General Instructions for the Computation of Sub-State Youth Allocations

The calculation of two of the three sub-state allocations shall utilize the most recently available twelve months (July through June) of data for the specific factor. Economically Disadvantaged data will also utilize the most recently available data on a calendar year basis. Because the source for ED data is the Census and because there is no current method to project the data from the Census year, the data is only updated every ten years.

The EIS Division of the VEC shall compile the necessary data annually and shall compute the percent of State by LWIA as well as by city/county. The factor weights (as specified in the law or modified by the appropriate authorities) shall be multiplied by the computed percentages to produce weighted city/county percentages by factor. Unlike Dislocated Workers where the weighted city/county percentages by factor are to be summed across the seven factors producing a single city/county percent-of-State figure, in Youth allocations the weighted city/county factor percentages are not summed. Under the current law there are only three factors and each has the same weight; therefore, the total Sub-State allocation amount for Youth (i.e. the 65% level as received from F&GS) shall be multiplied by the factor weight (33½%). The resulting factor allocation amount shall then be multiplied by the weighted city/county factor percentage. The city/county factor allocation amounts shall be summed to LWIA and State totals. After rounding the allocations to the nearest dollar and then adjusting the rounded figures so that they add to the original allocation total, the “EIS-Final” allocations for Youth shall be provided to the WIA Division of the VEC by March 31 every year.

- See appendix C for a sample of transfer memo.
- See appendix B for a sample of the F&GS allotment form.
Part 4: - Youth Allocations

D: Technical Notes on the Youth Allocation Factors

1) Number of Unemployed in Areas of Substantial Unemployment

An Area of Substantial Unemployment is defined in the act (Section 127[b][2][B]) as “...any area that is of sufficient size and scope to sustain a program of workforce investment activities carried out under this subtitle and that has an average unemployment of at least 6.5% for the most recent 12 months, as determined by the Secretary. For the purposes of this sub-clause, determinations of areas of substantial unemployment shall be made once each fiscal year.”

The LAUS unit, following BLS guidelines, defines an ASU as an area or group of contiguous areas that, combined, have a calculated unemployment rate of at least 6.45% and that have a minimum population of at least 10,000. LAUS determines which areas qualify as ASUs in the fall of the year using the revised July through June unemployment data.

Under the old BLS & LAUS methodology the base unit for building an ASU was the Census Tract. Current methodology (which is new this year and which may be modified) uses the city/county as the base unit. The old methodology allowed for a portion of a city/county, which met the unemployment and population standards to qualify for ASU funding even though the whole city/county did not qualify. Using the new methodology the entire city/county must meet the unemployment and population standards (or be a member of a group of contiguous cities/counties that, when combined, meet the standards).

Under the old methodology when unemployment in the State was high, several complete LWIAs might qualify as ASUs, while parts of several others qualified to varying degrees. Even with low unemployment there were usually parts of several LWIAs that qualified as an ASU. Under the new methodology, there will be more cases where a LWIA qualifies for no ASU funding.

2) Number of Excess Unemployed

Excess Number is defined in Section 132[b][2][D] of the act. “The term ‘excess number’ means, used with respect to the excess number of individuals within a State, the higher of:

(i) the number that represents the number of unemployed individuals in excess of 4.5 percent of the civilian labor force in the State: or
(ii) the number that represents the number of unemployed individuals in excess of 4.5 percent of the civilian labor force in areas of substantial unemployment in such State.”

By replacing the word ‘State” with the term “city/county” in the above definition, the EOR unit computes the excess unemployed in part (i) of the definition from the July through June unemployment data supplied by LAUS (usually on an Excel spreadsheet: PY0405_LAUS.XLS). The excess unemployed in part (ii) of the definition is computed
Part 4: - Youth Allocations

from ASU data that is supplied in an Excel format (and usually zipped) by LAUS (LWIA01_0405complete.xls through LWIA17_0405complete.xls).

Part (i):
This number is calculated from the average annual (total annual may be used if it is used consistently) revised monthly labor force and unemployed data supplied by the LAUS unit. For each county or city that has an unemployment rate of at least 4.5% percent, the excess unemployed is determined by multiplying 0.0445 times the civilian labor force and subtracting the result from the number of unemployed. This result is rounded to the nearest whole number.

The raw data received from LAUS (sorted by LWIA and FIPS) can be copied onto the IMPORT worksheet of the ASU_EXCESS_PY0405.XLS (for Program year 2006) spreadsheet. Check for the South Boston/Clifton Forge data and make any necessary revisions. The LAUS data should be in LWIA and FIPS code order, but it does not contain total lines for the LWIAs. Because the LAUS data and the IMPORT worksheet do not contain LWIA total lines, copy the data in columns D, E & F (Civilian Labor Force, Employed, and Unemployed) in groups by LWIA over to columns D, E, & F of the MAIN worksheet of the ASU_EXCESS_PY_0405.XLS spreadsheet. Column G recalculates the unemployment rate, showing five decimal places. Column L calculates the minimum number of unemployed in the city/county necessary to qualify for Excess Unemployment. Column N compares the minimum number to the actual number and calculates the excess.

Part (ii):
Before the final Excess unemployed number can be computed, ASU data need to be copied in groups by LWIA over to columns H, I & J of the MAIN worksheet of the ASU_EXCESS_PY0405.XLS workbook. This step may not be necessary under the new LAUS methodology that determines ASUs at the city/county level instead of the census tract level. Because the old (and possibly future) LAUS methodology looked at concentrations of unemployment within a city/county, it was possible that a city/county have an unemployment rate slightly above 4.5% producing a small number of Excess Unemployed while also containing a part of a larger ASU (with a much higher unemployment rate) that produced larger number of Excess Unemployed in the smaller area. In such a situation the city/county Excess Unemployed figure would be the larger of the two numbers. Column K recalculates the unemployment rate for the ASU data to 5 decimal places. Column M calculates the minimum number of unemployed in the ASU portion of the city/county necessary to qualify for Excess Unemployment. Column O compares the minimum number to the actual number and calculates the excess.

Final Excess Unemployment:
The formula in column P compares column N (FIPS Excess) to column O (ASU excess) and selects the larger number. This is the number that is copied (as values) over to the EXPORT worksheet of the ASU_EXCESS_PY0405.XLS workbook. From there it is copied to the IMPORT worksheet of the ALLOCATIONSMT.XLS workbook.
Part 4: - Youth Allocations

3) Economically Disadvantaged Youth

Economically Disadvantaged Youth is defined in the act (Section 127[b][2][C]) as a person between the ages of 16 and 21 (inclusive) who received an income, or is a member of a family that received a total family income that, in relation to family size, does not exceed the higher of: i) the poverty line or ii) 70 percent of the lower living standard income level. The act contains a Special Rule (Section 127[b][3]), that stipulates that college students and the military should be excluded from the disadvantaged youth count.

The Department of Labor and the Bureau of the Census have made arrangements with Social Policy Research Associates to produce a special tabulation of 2000 Census data to be used for WIA allocations. The tabulated data is contained in an Excel Spreadsheet (County.xls) that was distributed to the states via CDs. Since an update of this data is not expected until about January of 2014, the current data should be used until then.

➢ See Appendix N for the SPR documentation.

The data in the county.xls spreadsheet is to be copied onto the countyxls worksheet of the ED_Data_Census_2000.xls workbook. The cover worksheet of the workbook contains basic instructions. The EDSums worksheet of the workbook contains formulas that copy the appropriate data (by age group) from the countyxls worksheet and then sum the data to produce the necessary totals for Economically Disadvantaged Adults and Economically Disadvantaged Youth. The EXPORT worksheet of the workbook contains the summed data that is to be manually copied and pasted (as values) from EDSums and is ready for import to the ALLOCATIONSMT.XLS spreadsheet.

In 2014 (or if an update is produced sooner), verify that the new county.xls file is in the same format (Clifton Forge data will probably have been deleted by then) and then copy the county.xls on top of the countyxls worksheet of the ED_Data_Census_2000.xls workbook.

The county.xls spreadsheet has been copied onto the countyxls worksheet of the ED_Data_Census_2000.xls workbook. The cover worksheet of the workbook contains basic instructions. The EDSums worksheet of the workbook contains formulas that copy the appropriate data (by age group) from the countyxls worksheet and then sum the data to produce the necessary totals for Economically Disadvantaged Adults and Economically Disadvantaged Youth. The EXPORT worksheet of the workbook contains the summed data that has been manually copied and pasted (as values) from EDSums and is ready for import to the ALLOCATIONSMT.XLS spreadsheet.

In 2014 (or if an update is produced sooner), verify that the new county.xls file is in the same format (Clifton Forge data will probably have been deleted by then) and then copy the county.xls on top of the countyxls worksheet of the ED_Data_Census_2000.xls workbook.

➢ See Appendix N for the SPR documentation.
Appendix A:
WIA Funding Streams
Appendix A: WIA Funding Streams

There are three funding streams authorized under the Workforce Investment Act. Of the amount distributed to a state, 65% of the Dislocated Worker funding is to be allocated to the LWIAs; and 85% of the Adult and Youth amounts are to be allocated to the LWIAs. The exact formulas under which Adult money and Youth money are to be allocated to the sub-state areas is specified in the Act. For Dislocated Workers an exact formula is not specified, but the primary factors to be a part of the formula are specified. The weight that should be applied to each factor is left up to the states.

<table>
<thead>
<tr>
<th></th>
<th>DISLOCATED WORKERS</th>
<th>ADULTS</th>
<th>YOUTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Reserved for State Rapid Response Activities</td>
<td>25%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Amount Reserved for Statewide Activities</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Amount to be Allocated to the Local Workforce Investment Areas</td>
<td>60%</td>
<td>85%</td>
<td>85%</td>
</tr>
<tr>
<td>State Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Appendix B:
Sample WIA Allotment from F&GS
Appendix B:
Sample WIA Allotment from F&GS

Virginia WIA PY2004/ FY2005 Allotment

<table>
<thead>
<tr>
<th>State Level activities</th>
<th>Local Programs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disloc. Wkr.</td>
<td>Adult</td>
<td>Youth</td>
</tr>
<tr>
<td>State Admin. 5.00% Total</td>
<td>$1,909,672</td>
<td></td>
<td>$1,909,672</td>
</tr>
<tr>
<td>Statewide Activ. 10.00% Total</td>
<td>$3,819,345</td>
<td></td>
<td>$3,819,345</td>
</tr>
<tr>
<td>Fed. DW Form. Funds 60% DW Total</td>
<td></td>
<td>$7,881,269</td>
<td>$7,881,269</td>
</tr>
<tr>
<td>Rapid Response Activ. 25% DW Total</td>
<td>$3,283,862</td>
<td></td>
<td>$3,283,862</td>
</tr>
<tr>
<td>Fed. Form. Funds 85% Local Funds</td>
<td></td>
<td>$10,179,713</td>
<td>$11,119,584</td>
</tr>
<tr>
<td>Total</td>
<td>$9,012,879</td>
<td>$7,881,269</td>
<td>$10,179,713</td>
</tr>
<tr>
<td>PY 2004 Allotment</td>
<td>$13,135,448</td>
<td>$11,976,133</td>
<td>$13,081,864</td>
</tr>
</tbody>
</table>

Appendix C:
Sample Transfer Memo from EIS to WIA
Appendix C: Sample Transfer Memo from EIS to WIA

Monday, March 27, 2006

Memorandum

TO: Willie F. Blanton
 Director, Workforce Investment Act Unit

FROM: Don Lillywhite
 Director, Economic Information Services Division

SUBJECT: Adult, Youth and Dislocated Worker Allocations for Program Year 2006

Enclosed are the sub-state funding levels for Program Year 2006. All raw data has been updated to use the most current available data for the appropriate time periods.

The 12 month time period for most factors is July 1, 2004 through June 30, 2005. The agricultural employment loss data is compiled on a calendar year basis. Economically Disadvantaged Adults and Economically Disadvantaged Youth data was obtained from the 2000 census and will not be updated until after the 2010 Census.

The weights applied to the seven factors for Dislocated Workers the three factors for Adults, and the three factors for Youth to determine the local allocation amounts remain unchanged from last year.

The data source for agricultural data is the Virginia Department of Agriculture. The data source for the Economically disadvantaged data is the bureaus of the Census (through Social Policy Research Associates) Except for the CPI data, all other data (claims, employment, and unemployment rate) was obtained from the VEC.

The raw data and spreadsheets used are available. If you have any questions, please contact Mike Thacker at 786-0982.

Enclosures
Appendix D:
LWIA Funding Points for PY2005
Appendix D:
LWIA Funding Points for PY2005

- LWIA Allocations are calculated separately for Adult, Youth and Dislocated Workers.

- Different formulas are used for Adult, Youth and Dislocated Workers components.

- The adult formula has three factors each rated one-third. These factors are:
 1. Total number of unemployed in Areas of Substantial Unemployment (>= 6.5%)
 2. Number of Excess Unemployment (>= 4.5%)
 3. Economically Disadvantaged Adults.

- The youth formula also has three factors each rated one-third. These factors are:
 1. Total number of unemployed in Areas of Substantial Unemployment (>= 6.5%)
 2. Number of Excess Unemployment (>= 4.5%)
 3. Economically Disadvantaged Youth.

- The Dislocated Workers formula is based on seven factors:
 1. UI Claimants 20%
 2. Excess Unemployed 10%
 3. Initial Claimants 10%
 4. 15 Weeks+ Claimants 15%
 5. Final Payments 20%
 6. Declined Employment 20%
 7. Agricultural Employment Loss 5%.

- Adult and Youth allocations are subject to a Hold Harmless provision, which guarantees that Adult funding and Youth funding (separately) for a LWIA will not fall below 90 percent of the average of the area’s previous two years’ relative shares. Funds to raise areas to the 90% level are obtained by reducing the portion of allocations that exceeds the 90% level for the other areas. The same ratio is applied to all areas with funding above 90%.

- Most factors use the previous years data such as July 2003 to June 2004 for unemployment. 2000 (instead of 1990) census poverty rates are now being used to calculate economically disadvantaged youths and adults.

- The July through June period used to collect most of the data is consistent with the time period required by DOL to determine Areas of Substantial Unemployment.

- For Dislocated Workers the Declined Employment factor is calculated based on the decline in annual (July-June) averages over a five year span which ends in June of 2004. The Agricultural Employment loss factor is calculated based on decline in value of farm/ranch production from 1980 to the current year.
Appendix D:
LWIA Funding Points for PY2005

Examples of effect of Hold Harmless Process:

LWIA 1 (Southwestern VA)
Adult Allocation 2003 = $1.34 million
Adult Allocation 2004 = $1.14 million
Average Share (Relative to State) = 11.5%
90% of Relative Share = 10.4%
Hold harmless minimum = $1.02 million
Preliminary allocation from Formula = $528,000
Preliminary relative share = 5.3%
Needs $497,000 to reach Hold harmless minimum

LWIA 2 (New River/Mount Rogers)
Adult Allocation 2003 = $1.35 million
Adult Allocation 2004 = $1.20 million
Average Share (Relative to State) = 11.5%
90% of Relative Share = 10.7%
Hold harmless minimum = $1.06 million
Preliminary allocation from Formula = $844,000
Preliminary relative share = 8.5%
Needs $213,000 to reach Hold harmless minimum

LWIA 17 (West Piedmont)
Adult Allocation 2003 = $1.34 million
Adult Allocation 2004 = $1.23 million
Average Share (Relative to State) = 11.9%
90% of Relative Share = 10.8%
Hold harmless minimum = $1.06 million
Preliminary allocation from Formula = $1.53 million
Preliminary relative share = 15.5%
Amount above 90% level = $468,000
Adjustment factor = 47.2%
Return for Hold harmless = $221,000

Although the unemployment rate in LWIA2 was slightly lower than in LWIA1 for 2002/2003 and for 2003/2004, the unemployment rate in LWIA2 was slightly higher than the rate in LWIA1 for 2001/2002. For all three cycles, however the unemployment rate in LWIA17 was significantly higher than either LWIA1 or LWIA2. Since the population of LWIA2 is twice that of LWIA1 and the unemployment rates are similar, the preliminary allocation formula for PY2005 distributes nearly twice as much money to LWIA2 as was distributed to LWIA1. LWIA17 has a population only slightly higher than LWIA1 but an unemployment rate nearly twice as high as either LWIA1 or LWIA2 and a higher Economically Disadvantaged population. Therefore LWIA17 has a preliminary allocation that is nearly twice that of LWIA2 and three times that of LWIA1.

Due to the initial funding formula used in PY 2000, LWIA1 received a higher initial relative share than either LWIA2 or LWIA17. The preliminary PY2005 allocations for Adults in both LWIA 1 & 2 fall below the 90% threshold. By law, no area can receive less than 90% of its average share of the statewide allocations for the prior 2 years. Consequently, LWIA1 & LWIA2 had to be raised to the Hold Harmless level and other LWIAs (including LWIA17) that were above the 90% level had to return about 47% of the Adult funding above the 90% level.

Note: The PY2000 allocations for Adults and Youth were calculated using a different formula.
Appendix E:
List of Spreadsheets, Files and Programs
Appendix E: List of Spreadsheets, Files and Programs

Dislocated Workers:

1. CROPPRO.XLS
2. RANCHPRO.XLS
3. AGEMP.XLS
4. VECEDWAA (Mainframe Job)
5. VECEDWAA.SRL (TSO Download)
6. VECEDWAA.TXT
7. VECEDWAA.XLS
8. VECEOR20 (Mainframe Job)
9. VECEOR20.SRL (TSO Download)
10. VECEOR20.TXT
11. VECEOR20.XLS
12. PY0405_CLAIMS.XLS
13. DOCNTCLMS.PRG (FoxPro)
14. CLMS0405.XLS
15. PY0405_LAUS.XLS (usually already done by LAUS unit)
16. ASU_EXCESS_WORKSHEET_PY_0405.XLS
17. WRAPMT.XLS
18. COMBINED_ALLOCATIONS.XLS
19. ADJUSTED_ALLOCATIONS.XLS
20. EISFINALALLOCATIONS.XLS

Adults and Youth

1. COUNTY.XLS (Census data from SPR)
2. ED_Data_Census_2000.XLS
3. PY0405_LAUS.XLS
4. ASU_EXCESS_WORKSHEET_PY_0405.XLS
5. ALLOCATIONSMT.XLS
6. COMBINED_ALLOCATIONS.XLS
7. ADJUSTED_ALLOCATIONS.XLS
8. EISFINALALLOCATIONS.XLS
Appendix F:
Preliminary Dislocated Workers Allocations Flow Chart
Appendix F:
Preliminary Dislocated Workers Allocations Flow Chart

INPUTS FOR DISLOCATED WORKERS
(Spreadsheet WRAPMT.XLS)

Agricultural Employment Loss
Initial Claims
Long Term Unemployment (15+ Weeks)
Final Claims
Excess Unemployment
Continued Claims
Employment in Declining Industries

‘vecei.user.edwaa.m5day’ → I:\mydocu~1\extfiles\edwaa\vecedwaa.txt
Import text file to vecedwaa.xls. Make sure that all FIPS codes are present and in order. Then copy 3 separate data columns into wrapmt.xls(IMPORT).

Agemp.xls - converts production/value decline to employment decline.
Download (TSO) within 5 days of mainframe run.
(c:\progra~1\person~1\private\vecedwaa.srl)

Ranchpro.xls
Production Value & Cash Receipts
Census Web Site

Croppro.xls
Production Value & Cash Receipts

CPI (AUC) for CY

ASU Excess Worksheet_oyny.xls (also used for allocationsmt.xls)

ASU Data
July – June Excel

Unemployment Data
July – June Excel

Vecei.user.edwaa.m5day’ → I:\mydocu~1\exftxt\edwaa\vecedwaa.txt
Import text file to vecedwaa.xls. Make sure that all FIPS codes are present and in order. Then copy 3 separate data columns into wrapmt.xls(IMPORT).

Docntclms.prg
Convert LAUS to FIPS
Convert Text to Excel

Download (TSO)
(c:\progra~1\person~1\private\veceor20.srl)

‘vec.research.user.veceor20.disk → I:\mydocu~1\extfiles\edwaa\veceor20.txt. Import
text file into veceor20.xls. Check FIPS codes, keep only TOTALs, copy into wrapmt.xls(IMPORT).

Continued Claims Data
July – June
<==(Excel – use as is)
(Text – run FoxPro job)===>

LAUS Data
July - June

VECEOR20 - QCEW Data (July – June)
(Mainframe) Calculates declines from 5 years ago by industry.
Appendix G:
Preliminary Adult & Youth Allocations Flow Chart
Appendix G:
Preliminary Adult and Youth Allocations Flow Chart

ADULT & YOUTH ALLOCATIONS
spreadsheet Allocationsmt.xls

Adult Allocation Factors
Unemployment in Areas of Substantial Unemployment
Economically Disadvantaged Adults

Youth Allocation Factors
Unemployment in Areas of Substantial Unemployment
Economically Disadvantaged Youth

ASU_EXCESS_WORKSHEET_oyny.xls - Calculates EXCESS unemployment by FIPS. Unemployment not available by age, so same data used for Adult & Youth.

LAUS Data July – June
Source: LAUS

Unemployment Data July – June

Census data updated only every 10 years so factor does not change, except at that time

Census Data Calendar Year
Source: Census
Appendix H:
EIS-Final Adult, Youth & Dislocated Worker Allocations Flow Chart
Appendix H:
Final Adult, Youth and Dislocated Worker Allocations Flow Chart

EISFINALALLOCATIONS.xls (EISFinalAllocations)
Final Adult, Youth, & Dislocated Worker Allocations by LWIA & FIPS
(to be approved by WIA Div.)

Adjustedallocations.xls (Revised LWIA Allocations)
Apply Hold harmless procedure to Adult & Youth allocations.

Combined Allocations.xls (LWIA Shares)
Calculate preliminary share of LWIA for Adult & Youth allocations for each FIPS.

Adjustedallocationsmt.xls (Hold Harmless Worksheet)
Calculate Adult & Youth Hold Harmless levels for each LWIA.

Adjustedallocationsmt.xls (Preliminary LWIA Allocations)
Sum preliminary Adult & Youth allocations by LWIA.

Combined Allocations.xls (Allocations)
Preliminary Allocations by FIPS & LWIA

Allocationsmt.xls (Allocations)
Initial Adult & Youth Allocations (by Formula)

Wrapmt.xls (Summary)
Initial Dislocated Worker Allocations (by Formula)
Appendix I:
Agricultural Employment Loss Formula Alternatives
Appendix I: Agricultural Employment Loss Alternatives

A more accurate proxy would involve modifying the employment formula to compare estimated net income instead of estimated value of production. The Census of Agriculture now contains a measure “Net cash income of farm operations” which might be used to approximate Est Net Inc. However the data is not updated until the next Census of Agriculture and using this measure would actually result in using the change in CPI between the Census year and the Most Recent Year of the Annual Bulletin.

The Census of Agriculture also contains a measure “Farm Production Expenses” which might be used to calculate Est Net Inc. This measure also is not updated until the next Census of Agriculture. A larger problem with this measure is that while the data covers all farm output by county, while the Estimated Value of Production, from which it would need to be subtracted, is computed from only part of the agricultural output of Virginia.

The estimated production expenses data necessary for this process to be used are not published below the county total level. Farms and ranches are combined and there is no way to differentiate between the two (or among crops).

Estimated net income is the estimated value of production (Est Val Prod) minus the estimated production expenses (Est Prod Exp):

\[
\text{Est Net Inc} = \text{Est Val Prod} - \text{Est Prod Exp}
\]

Estimated Production expenses for each county/city is calculated by multiplying the product of the estimated value of production divided by the state’s estimated value of production (State Est Val Prod) times the state production expenses (State Prod Exp):

\[
\text{Est Prod Exp} = \frac{\text{Est Val Prod}}{\text{State Est Val Prod}} \times \text{State Prod Exp}
\]

This would leave the final employment formula as:

\[
\text{Employment}_{(\text{MRY})} = \frac{\text{Est Net Inc}_{(\text{MRY})}}{\text{Est Net Inc}_{(\text{CY})}} \times \frac{\text{Employment}_{(\text{CY})}}{\text{CPI}_{(\text{CY})}/\text{CPI}_{(\text{MRY})}}
\]

The Census of Agriculture now contains a measure “Net cash income of farm operations” which might be used to approximate Est Net Inc. However since it is not updated until the next Census of Agriculture, using it would result in actually using the change in CPI between the Census year and the Most Recent Year of the Annual Bulletin.

Whichever formula is used, the proxy for agricultural employment for the most recent year will be subtracted from the employment in the census year to determine the estimated employment loss for the county/city if a loss has occurred.
Appendix J:
Detailed Instructions for Agricultural Employment Loss
(CROPXLS, RANCHXLS, & AGEMP.XLS)
Appendix J1:
Detailed Instructions for Agricultural Employment Loss

Agricultural Employment Loss is not a readily available statistic since a primary source of the data is from the Census of Agriculture, which is published only once every five years. The employment decline in agriculture is one of the required annual components of the Dislocated Worker allocation formula. In Virginia the procedure to estimate the employment decline relies on a proxy value that is created from the amount of production (for 14 crop and for 4 livestock categories) and the cash receipts for such production. This data is published annually (between October and December) on the USDA web site (http://www.nass.usda.gov/va/) in the Annual Bulletin (2004 for PY2006).

The production amounts are usually available by city/county, but the cash receipts are only available at the statewide level. To compute the commodity production value for a locality, that locality’s percent of the statewide (minus “statewide - all other” since no allocation can be made to “all other”) production of the commodity must first be determined; next the percent must be multiplied by the value of the statewide cash receipts for the commodity. The deflated value of production is compared to the 1982 (or an updated census year) value of production to determine the amount and percentage of production (and, theoretically, employment) decline. If the value has increased, the amount of decline is set to zero.

Employment in the most recent year (MRY) shall be estimated using the following procedure:

1. Deflate the estimated value of production (Est Val Prod) for the MRY and the Est Val Prod from the Census of Agriculture for the Census Year (CY) by their respective Consumer Price Index (CPI) levels.

2. Divide the deflated Est Val Prod(MRY) by the deflated Est Val Prod (CY).

3. Multiply the resulting ratio by the employment in the census year.

\[
\text{Employment}_{(\text{MRY})} = \text{Employment}_{(\text{CY})} \times \frac{\text{Est Val Prod}_{(\text{MRY})}}{\text{CPI}_{(\text{MRY})}} \div \frac{\text{Est Val Prod}_{(\text{CY})}}{\text{CPI}_{(\text{CY})}}
\]

The AGEMP.XLS workbook sums the estimated values of production (combining the data from the CROPPRO.XLW and RANCHPRO.XLS workbooks) for all commodities at the city/county level. It also computes the ratio of the deflated production value for the current year to the deflated production value for the census year, (using the CPI – All Urban Consumers averages for the respective years). The resulting percentage is then applied to the
Appendix J1:
Detailed Instructions for Agricultural Employment Loss

employment for the census year to estimate the employment for the current year and the decline from the census year. This final figure is used as one of the seven factors imported to the WRAPMT.XLS workbook where dislocated Worker Allocations are calculated.

To obtain the raw data needed for the CROPPRO.XLW and RANCHPRO.XLS workbooks, print (or download) the following data from the Annual Bulletin (2004 for PY2006) on the USDA web site (http://www.nass.usda.gov/va/):

A) General
3. Rankings of Principal Crops & Livestock

B) Field Crop County Estimates
7. Corn for Grain & Corn for Silage
8. Soybeans
9. Wheat
10. Barley
11. Peanuts & Cotton
12. Tobacco

C) Fruits
1. Apple & Peach Production, Price & Utilization
4. Apples: Commercial Production by County

D) Livestock County Estimates
3. Cattle & Milk Cows
4. Sheep & Hogs

E) Flue, Burley & Sun tobacco distribution Maps

F) Fire Tobacco, Peanuts & Cotton Distribution Maps

Data from A, B & C are used as input to CROPPRO.XLS while data from A & D are used as input to RANCHPRO.XLS. The data in E & F is only used when you need a “visual” of the localities where the production is concentrated.

Outputs from CROPPRO.XLS and RANCHPRO.XLS along with the current annual CPI from BLS are used as inputs for AGEMP.XLS. CROPPRO.XLS & RANCHPRO.XLS calculate the percent of state for each crop/livestock by FIPS and AREA and apply the percentages to the Statewide Cash Receipts for each crop/livestock to arrive at an estimate of production value by county. The percentage decline in production value is applied to the 1982 employment to estimate the decline in employment – which is then imported to WRAPMT.XLS.

Before proceeding to enter the raw data into the CROPPRO and RANCPRO workbooks it must be reviewed and production that is included in the total for an agricultural district but is not assigned to a specific city/county must be apportioned out to some or all of the other localities in the district. The amount of the production that is to be recorded is shown in the following table:
Appendix J1:
Detailed Instructions for Agricultural Employment Loss

<table>
<thead>
<tr>
<th>CROPS:</th>
<th>Annual Bulletin Unit</th>
<th>CROPRO Data Entry Unit</th>
<th>Annual Bulletin Production</th>
<th>CROPRO Data Entry</th>
<th>A.B. Statewide Cash Receipts (in Thousands)</th>
<th>CROPRO Data Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn for Grain</td>
<td>Bushels</td>
<td>1,000 Bushels</td>
<td>220,000</td>
<td>220.0</td>
<td>62,286</td>
<td>62,286.0</td>
</tr>
<tr>
<td>Corn for Silage</td>
<td>Tons</td>
<td>1,000 Tons</td>
<td>32,300</td>
<td>32.3</td>
<td>36,384*</td>
<td>36384.0*</td>
</tr>
<tr>
<td>Soybeans</td>
<td>Bushels</td>
<td>1,000 Bushels</td>
<td>37,400</td>
<td>37.4</td>
<td>81,011</td>
<td>81,011.0</td>
</tr>
<tr>
<td>Oats</td>
<td>Bushels**</td>
<td>1,000 Bushels**</td>
<td>0**</td>
<td>0**</td>
<td>0**</td>
<td>0.0**</td>
</tr>
<tr>
<td>Wheat</td>
<td>Bushels</td>
<td>1,000 Bushels</td>
<td>40,000</td>
<td>40.0</td>
<td>22,929</td>
<td>22,929.0</td>
</tr>
<tr>
<td>Barley</td>
<td>Bushels</td>
<td>1,000 Bushels</td>
<td>25,000</td>
<td>25.0</td>
<td>7,242</td>
<td>7,242.0</td>
</tr>
<tr>
<td>Peanuts</td>
<td>Pounds</td>
<td>1,000 Pounds</td>
<td>2,999,000</td>
<td>2,990.0</td>
<td>21,628</td>
<td>21,628.0</td>
</tr>
<tr>
<td>Cotton</td>
<td>Bale</td>
<td>1 Bale</td>
<td>1,290</td>
<td>1,290.0</td>
<td>30,325</td>
<td>30,325.0</td>
</tr>
<tr>
<td>Flue Tobacco (Type 11)</td>
<td>Pounds</td>
<td>1,000 Pounds</td>
<td>364,000</td>
<td>364.0</td>
<td>69,446,124.51***</td>
<td>69,446.12***</td>
</tr>
<tr>
<td>Sun Tobacco (Type 37)</td>
<td>Pounds</td>
<td>1,000 Pounds</td>
<td>15,400</td>
<td>15.4</td>
<td>177,037.27***</td>
<td>1,770.37***</td>
</tr>
<tr>
<td>Burley Tobacco (Type 31)</td>
<td>Pounds</td>
<td>1,000 Pounds</td>
<td>9,700</td>
<td>9.7</td>
<td>18,199,941.89***</td>
<td>18,199.94***</td>
</tr>
<tr>
<td>Fire Tobacco (Type 21)</td>
<td>Pounds</td>
<td>1,000 Pounds</td>
<td>30,700</td>
<td>30.7</td>
<td>16,999,896.33***</td>
<td>1,699.90***</td>
</tr>
<tr>
<td>Apples (in thousands)</td>
<td>1,000 Bushels</td>
<td>1,000 Bushels</td>
<td>571</td>
<td>571.0</td>
<td>24,827</td>
<td>24,827.0</td>
</tr>
<tr>
<td>Peaches (in thousands)</td>
<td>1,000 48-Pound Boxes</td>
<td>48-Pound Boxes</td>
<td>208****</td>
<td>208,000.0****</td>
<td>3,478</td>
<td>3,478</td>
</tr>
<tr>
<td>LIVESTOCK:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Cattle</td>
<td>Head</td>
<td>1 Head</td>
<td>1,000</td>
<td>1,000</td>
<td>339,260</td>
<td>339,260</td>
</tr>
<tr>
<td>Milk Cows</td>
<td>Head</td>
<td>1 Head</td>
<td>750</td>
<td>750</td>
<td>244,666******</td>
<td>244,666******</td>
</tr>
<tr>
<td>Hogs</td>
<td>Head</td>
<td>1 Head</td>
<td>200</td>
<td>200</td>
<td>50,533</td>
<td>50,533</td>
</tr>
<tr>
<td>Sheep</td>
<td>Head</td>
<td>1 Head</td>
<td>250</td>
<td>250</td>
<td>3,608******</td>
<td>3,608******</td>
</tr>
</tbody>
</table>

Footnotes:
* (Corn-for-Silage) - The estimated statewide cash receipts for corn-for-silage is computed by subtracting the cash receipts for corn-for-grain from the value of production for corn-for-grain.
** (Oats) - Data for Oats are no longer included in Annual Bulletin.
*** (Tobacco) - Estimated statewide cash receipts for each the 4 tobacco type are computed from the statewide production of each type of tobacco times the statewide price per hundred pounds for that type of tobacco. These calculations, made on the TOBACCO worksheet, must be done before data entry for the estimated cash receipts for the tobacco types can be completed.
**** (Peaches) - Peaches are only reported at the statewide level. Therefore they are reported as statewide-all-other and, as such, are excluded from the computations.
***** (Milk Cows) - Estimated cash receipts for milk cows is equal to the cash receipts for milk.
****** (Sheep) - Estimated cash receipts for sheep is the sum of the cash receipts for sheep and wool.
Appendix J1: Detailed Instructions for Agricultural Employment Loss

The table on the previous page shows the crops and livestock covered in the CROPPRO.XLW and RANCHPRO.XLS workbooks. It also gives a sample of the data in the Annual Bulletin and how that data is to be keyed. It also contains footnotes to help explain how some crops or livestock are treated differently than the normal procedures. Discrepancies between the district totals and the sum of locality totals in the Annual Bulletin are not addressed in the table, but there are procedures to cover that event.

Because the agricultural district total for production is sometimes larger than the sum of the production for localities in the district, this difference must be assigned to some or all of the remaining localities in the district. The first cause of the discrepancy is those localities where the data has been suppressed either because less than 500 acres of the crop was planted or because the locality data is confidential. Such counties are listed in the tables but have an “*” for the amount of production. The second cause of the discrepancy is those localities that produce a small amount of the crop but are not listed in the table. Identifying the second group of counties involves some deductive work and some guess work.

The first step in identifying missing localities is to compare the production tables with those for the census year. Areas that produced the crop in the census year but are not in the current table are the initial candidates and should be added to the side of the table. Areas that were “identified” from the previous Annual Bulletin are strong candidates. Areas that were set to zero in the previous year (usually cities and urban counties like Newport News, Hampton and York County) should probably be set to zero again.

Deciding which of the missing localities should be included with those listed can be done manually or as a part of the data entry for CROPPRO.XLW and RANCHPRO.XLS. It is easier to do as part of the data entry because the spreadsheets will calculate the totals and identify discrepancies from the Annual Bulletin district total. It may be more helpful for a “first-time analyst” to try to make the identifications manually to gain a better understanding of the formulas in the worksheets.

The logic for distributing production among localities within a district is as follows:

1. If the district total from the Annual Bulletin is smaller than the computed sum of the localities’ production), something is wrong in the data entry or the computation. Check the data entry and the computations for errors, making any necessary corrections, and then verify that the Annual Bulletin district totals add to the State total. If they do not add to the State, this MAY indicate an error in the Annual Bulletin.

2. If the Annual Bulletin district total is greater than the computed sum of the localities’ production and if the difference is much greater than the smallest amount of production, something may be wrong in the data entry or the computation. Check the data entry and the computations for errors, making any necessary corrections. (Hogs are one example of a commodity where the district totals are much higher than the sum of the localities, since hogs are usually only reported at the district level.) Once the magnitude of the difference has been determined to be reasonable, proceed as if the difference were small.
Appendix J1: Detailed Instructions for Agricultural Employment Loss

3. If the Annual Bulletin district total is greater than the computed sum of the localities’ total and the difference is reasonable (and there are “asterisk” localities), then the difference must be distributed to the “asterisk” localities and possibly some missing localities. To determine the estimated production values for the “asterisk” localities subtract the computed district total from the Annual Bulletin district total and then divide by the number of “asterisk” localities. Cells containing formulas for “asterisk localities” use a blue font (except or apples – see the CROPPRO instructions). If this result seems too high (it should usually not be much larger than the value for the locality with the smallest production), then some or all of the missing localities must be included in the distribution as if they were “asterisk” localities. These “missing counties” should have a red font.

Specific instructions for each the three workbooks (CROPPRO.XLW, RANCHPRO.XLS and AGEMP.XLS) complete the rest of Appendix J.
Appendix J2:
Detailed Instructions for Agricultural Employment Loss
CROPPRO.XLW Instructions

The CROPPRO.XLW workbook contains five macros and seven worksheets (five of which have the same general setup with the top four rows and leftmost four columns used as headers), is like most other workbooks used in the allocations process in two primary ways:

1) the individual worksheets of the workbook are generally processed from left to right, and
2) cells that contain formulas are usually shaded, and some may be protected.

On the DATA ENTRY worksheet a grey background may be used to highlight some data entry cells (usually for entering State level Cash Receipts data, which is to be distributed to the cities/counties by formulas, and district level production data), and certain cells that contain formulas use a colored font rather than a shaded background. These colored font cells are usually the cells where all or part of a district’s production must be distributed among some or all of the localities in the district. In general a blue font indicates that the distribution is to areas that are known to have produced the commodity while a red font indicates that the distribution is to areas that MAY have produced the commodity. (For apples the colors usually indicate the apple growing region - as opposed to the agricultural district - for which a distribution is being made.)

BASEYR82 Worksheet:
The first of the seven worksheets is BASEYR82, and it contains the historical production and price data from the Census Year. This data (including the CPI) should probably be updated with 2002 data (from the ProgramYr2004 folder). At that point the worksheet name should be changed to BASEYR02; the BASEYR82 worksheet of the RANCHPRO.XLS workbook should be updated at the same time. You may want to change the sort for the BASEYR82 and NEWYEAR worksheets to be FIPS within District (to match the DATAENTRY worksheet and the Annual Bulletin). The RANCHPRO.XLS workbook has already been modified so that the three worksheets are sorted by FIPS within District to match the Annual Bulletin. The only reason to access the BASEYR82 worksheet (unless it is being modified) is to identify the amount (if any) that cities/counties produced in the census year or the CPI for the census year.

DATAENTRY Worksheet:
The second worksheet of CROPPRO.XLS, DATAENTRY, will be the most time consuming. In addition to entering the amount of production into columns E through R (refer to page 71 for a sample of the data entry process), you also must distribute among some or all of the areas within a district that portion of the district production not specifically assigned to a locality. As discussed earlier, localities with an asterisk for production in the Annual Bulletin will be among the areas receiving a share of the “district only” production since they were known to produce some suppressed amount of the commodity. If necessary the scope of the distribution will be broadened to include localities that are in the district, produced the commodity in the census year, but are not listed as producing localities for the current year.

The top four rows and leftmost four columns are headers so the DATAENTRY panes have been frozen at cell E5 to allow the user to scroll around the worksheet without losing the row/column headers. Cell C1 contains the program year (P2005), change this value when you begin data entry. The program year at the top of most of the other worksheets in the workbook (as well as
Appendix J2:
Detailed Instructions for Agricultural Employment Loss
CROPPRO.XLW Instructions

those on each line of DATAENTRY) refer back to this cell for dates, so all of them will change when you change C1.

The line immediately below the last locality in each district is grey shaded and is the data entry line for district totals from the Annual Bulletin. The next three lines are blue shaded and contain formulas to make it easier to analyze any excess production. The first of the blue shaded lines sums the data that has been entered for the localities. The second blue shaded line contains a formula that subtracts the calculated district total from the Annual Bulletin district total. This identifies the amount of excess production. The analyst must then check for “asterisk” localities and census year localities to determine how to split the excess. The following four examples show how the process was applied in the PY2005 allocations.

Example 1 - Distributing excess production to “asterisk” localities:
When all of the data entry for corn-for-grain in the Western District had been completed for PY2005, Cell E130 showed that the sum of the locality production (cell E129) was 57.3 thousand bushels less than the district total (Cell E128). There were three “asterisk” localities (Alleghany, Craig, and Highland counties) in the district and there was excess production. Two other localities (Bath and Roanoke counties) also produced corn in the census year but were not included in the current distribution because the excess, when split between the three “asterisk” counties, was smaller than any locality in the district produced in the census year. The formula “=57.3/3” was entered for those three cells (E120, E124 & E125) – using a BLUE font to indicate that the suppressed production was evenly divided among those localities by the analyst. Bath and Roanoke counties were then entered as “0.0” using a RED font to indicate other non-producing localities in the district. After entering the formulas, Cell E130 was zero and Cells E128 and E129 were equal.

Example 2 – Distributing zero excess to “asterisk” localities:
When all of the data entry for corn-for-silage in the Eastern District had been completed for PY2005, Cell E51 showed that the sum of the locality production (Cell E50) was equal to the district total (Cell E49). There was no excess production but there were twelve “asterisk” localities (Accomack, Charles City, Essex, Gloucester, James City, King George, Lancaster, Mathews, Middlesex, Northampton, and Northumberland counties) in the district. One other locality (York county) also produced corn in the census year but was not included in the current distribution because there was no excess production in the district. The formula “=0.0/12” was entered for those twelve cells (F30, F31, F32, F33, F34, F36, F38, F49, F40, F41, F42, F43). A BLUE font was used for these “asterisk” localities and a RED font was used to indicate other non-producing localities in the district. After entering the formulas, Cell E130 was zero and Cells E128 and E129 were equal.

Example 3 – Distributing excess to “asterisk” and “missing” localities:
When all of the data entry for winter wheat in the Southern District had been completed for PY2005, Cell G97 showed that the sum of the locality production (Cell G96) was 25.0 thousand bushels less than the district total (Cell G95). There was one “asterisk” locality (Lunenburg county) in the district and there was excess production. Three other localities
Appendix J2:
Detailed Instructions for Agricultural Employment Loss
CROP PRO.XLW Instructions

(Franklin, Henry and Patrick counties) produced wheat in the census year and were included in the current distribution because the excess, when split among the single “asterisk” county, was larger than the smallest published production value for the other localities in the district. The formula “=25.0/4” was entered for those four cells (G90, G91, G92, G93). A BLUE font was used for the “asterisk” locality (Lunenburg county) and a RED font was used for the “missing” localities (Henry, Nottoway, and Patrick counties) that were included in the distribution.

Example 4 – Distributing excess to “missing” localities:
When all of the data entry for soybeans in the Southern District had been completed for PY2005, Cell J97 showed that the sum of the locality production (Cell J96) was 27.8 thousand bushels less than the district total (Cell J95). There were no “asterisk” localities in the district but there was excess production. Franklin, Henry and Patrick counties produced soybeans in the census year, so the excess (27.8 thousand bushels) was split between the three counties. The formula “=27.8/3” was entered for those three cells (J88, J90 & J93) – using a RED font to indicate that the production was “assigned” to those localities by the analyst.

General guidelines for entering data on the DATAENTRY worksheet:

1. Make sure the CROP PRO.XLW workbook is in the folder for the new allocation year.
2. Unprotect the cells for a specific crop and district (including the grey shaded line for the district total).
3. Delete the data for that crop and district (including the district total).
4. Enter all data for the counties in the district showing production in the Annual Bulletin.
5. Check the blue shaded formulas at the bottom of the district to determine the excess.
 The excess production for a district should be small unless there are a lot of “asterisk” localities or the crop is only reported as a district total.
6. When you are satisfied that the excess is reasonable, use the annual bulletin to count the “asterisk” localities.
7. Use a BLUE font to enter the appropriate formula in the cells for “asterisk” localities.
8. If the distributed amount calculated by the formula is too large, identify “missing” localities that should be included in the distribution using the Census Year data.
9. Change the denominator for the “asterisk” localities to include the “missing” localities.
10. Use a RED font to enter the new formula for the selected “missing” localities.
11. Use a RED font to enter “0.0” in any remaining localities.
12. Verify that the computed district total matches the Annual Bulletin total (after the last district has been completed verify that the computed state total matches the Annual bulletin total).
13. Protect the cells for the district/crop you have just processed and process the next district/crop in the same manner.

Special data entry instructions for oats, apples and peaches:

A. Oats: Production values and Cash Receipts data for oats are reported in the census but have been discontinued from the Annual Bulletin. If reporting resumes in the Annual
Appendix J2: Detailed Instructions for Agricultural Employment Loss
CROPSTC.XLW Instructions

Bulletin, enter the data for oats in column H. If only statewide data is available place the data in cell H132.

B. Peaches: Both production and cash receipts data are available for peaches. However, the Annual Bulletin only shows production value for peaches at the State level. Enter the State total in cell R132. Line 132 is for State – Other. All distributions are made on the basis of a locality’s share of the State production (line 133) minus any State – Other production (line 132). That effectively eliminates peaches from the total production value proxy for the current year.

C. Apples: Both production and cash receipts data are available for apples at the district and locality level. The problem here is that the districts by which apples are reported are not the same as the districts used for other crops and livestock. Transferring the localities with reported production from the apple districts into the standard districts is a simple (but sometimes confusing) process if done slowly. Excess production for an apple district is distributed among any “asterisk” and/or “missing” localities in the apple district. Those areas usually remain constant from year to year. The procedure is similar to that outlined above for other crops with the exception of the color font for the formulas used. RED and BLUE are not used to differentiate between “asterisk” and “missing” localities. Instead the color of the font indicates the apple district from which the locality received its computed share of production.

1. Localities that received a calculated share of the Shenandoah apple district production are identified by a formula with a PINK font.
2. Localities that received a calculated share of the Piedmont apple district production are identified by a formula with a GREEN font.
3. Localities that received a calculated share of the Central apple district (which contains none of the localities in the standard Central district) production are identified by a formula with an ORANGE font.
4. Localities that received a calculated share of the Southwest apple district (which includes a mixture of the standard Southern and Southwestern districts) production are identified by a formula with a TEAL font.

The apple distribution should be done manually since the worksheet is designed to calculate totals and excess production for the standard districts instead of the apple districts.

The VALUES, SORT, TOBACCO, and NEWYEAR worksheets can be skipped if you plan to run all of the macros. In that case, after running the macros and verifying that the data is correct on those worksheets, you would proceed to the EXPORT worksheet and copy the data to the IMPORT worksheet of WRAPMT.XLS. Otherwise, they should be processed as follows:

VALUES Worksheet:
The VALUES worksheet is primarily a location that holds the same data (in the same cells) as the DATENTRY worksheet. Select and Copy cells A5:R133 on the DATENTRY worksheet.
Appendix J2:
Detailed Instructions for Agricultural Employment Loss
CROPPRO.XLW Instructions

Then use Paste Special to paste that data – as values - to cell A5 of the VALUES worksheet as values. Next use Paste Special to paste the same data – as formats – to cell A5 of VALUES. Spot check to verify that the data has been copied to the correct cells, that the formats (cell shading and font color) is correct, that the State totals are in the correct row, and that all of the crops have been copied (corn through peaches).

SORT Worksheet:
The SORT worksheet is used to resort the data from the VALUES worksheet into the same order as the data on the NEWYEAR worksheet. Select and Copy cells A5:R133 on the VALUES worksheet. Then use Paste Special to paste that data (formats and values) to cell A5 of the SORT worksheet. Also use Paste Special to paste the data (formats and values) to cell AA5 of the SORT worksheet. (Cells AA5:AR133 are just a backup copy.) Next select cells A5 through R133 of SORT and pick Data and Sort from the top menu. At the bottom of the pop-up menu choose Header Row, then select FIPS (ascending) and DISTRICT (ascending) as the sort fields and click OK. This should sort the data by FIPS code and place the district total lines at the bottom in rows 106 through 133. Only rows 5 through 105 will be copied to the NEWYEAR worksheet.

TOBACCO Worksheet:
The Annual Bulletin has production data for all four types of tobacco:
1. Flue Cured Tobacco (Type11),
2. Burley Tobacco (Type31),
3. Fire Cured Tobacco (Type 21), and
4. Sun Cured Tobacco (type 37).

Because Cash Receipts are available only for total tobacco production, the TOBACCO worksheet is necessary to calculate the proxy value for Cash Receipts for tobacco by type. The Annual Bulletin does list the monthly and average annual price per one hundred pounds for each of the four tobacco types.

For each tobacco type the total number of pounds produced is divided by one hundred and then multiplied by average price for one hundred pounds of that tobacco to approximate the Total Sales for that type. (The sum of Total Sales for the four tobacco types should be very close to the Value of Production for all tobacco in the Annual Bulletin.) The percentage of Total Sales that each type represents is then multiplied by Cash Receipts for all tobacco, to produce the proxies for Cash Receipts by tobacco types. The formulas are as follows:

\[
(\text{PRODUCTION}_{\text{Type}} \div 100) \times \text{PRICE}_{\text{TYPE}} = \text{SALES}_{\text{TYPE}}
\]

\[
\frac{\text{SALES}_{\text{TYPE}}}{\text{TOTSALES}} = \%\text{SALES}_{\text{TYPE}}
\]

\[
\%\text{SALES}_{\text{TYPE}} \times \text{RECEIPTS} = \text{CRPROXY}_{\text{TYPE}}
\]

The first step in processing the TOBACCO worksheet is to save the old data by copying it to the bottom of the page (copy C3:H12 to C15:H24). Next update the program year in cell C15 and the crop year in cell C16. Enter the prices per 100 pounds of the tobacco types in cells C7
Appendix J2:
Detailed Instructions for Agricultural Employment Loss
CROPPRO.XLW Instructions

through F7. Enter the Cash Receipts data for all tobacco from the Annual Bulletin in cell G10. The rounded production value proxies in cells C11 through F11 is now ready to be transferred, along with the other Cash Receipts data from the Annual Bulletin, to cells S105 through AF105 on the NEWYEAR worksheet.

NEWYEAR Worksheet:
The NEWYEAR Worksheet does most of the "heavy lifting" of converting production and cash receipts data into production value proxies. Like most of the other worksheets the top four rows and leftmost four columns are headers. Data in cells E5 through R105 is copied from the same cells on the SORT worksheet. Cells E106 through R106 contain sum formulas to check that the copied data matches the summed data. Cells S106 through AF106 are data entry cells for statewide Cash Receipts for the various crops. Cells S5 through AF105 contain formulas that distribute the statewide cash receipts according to each locality's share of a crop's production amount in the State (minus State-Other). Cells S107 through AF107 contain sum formulas to verify that the sum of the distributed cash receipts is equal to the data entered in row 106. Cells AG5 through AG105 contain formulas that sum the distributed cash receipts in all columns across a row. Cell AG106 contains a formula that sums Cells AG5 through AG104. The totals in Cell AG105 and Cell AG106 should be close but will not agree. Cell AG105 is the sum of all distributed Cash Receipts in the State (including Peaches and including State-Other). Cell AG106 is the sum of all distributed Cash Receipts (State-Other is excluded but has been shared out to the localities. Peaches are also excluded because the production and receipts data is only available at the State level.). The difference between AG105 and AG106 should be equal to the cash receipts for peaches. Cell AG107 contains a formula to add peaches (Cell AF104) to Cell AG106. If the difference is more than five between Cells AG105 and AG106, the background in Cell AG107 will become RED to indicate a probable error. Cells AH5 through AH105 contain formulas to subtract the current production value proxy from the Census Year production value (if the value has INCREASED, the positive number is replaced with 0. Cell AH106 contains a formula to sum the declines in Cells AH5 through AH104. The totals in Cells AH106 and AH105 should be very close. Column AI contains formulas to show the un-rounded sums across the columns from S through AF. Since column AF (peaches) is zero except for State-Other, the cells in rows 5 through 103 of column I should round to the cells in column AG.

EXPORT Worksheet:
The EXPORT worksheet only contains three columns of the current year's data (FIPS, Production Value Proxy, and Proxy Decline. After completing the NEWYEAR worksheet, columns A, B, & C of the EXPORT worksheet are copied to columns E, F, & G to save the old data. Then columns A (FIPS), AG (Production Value Proxy), and AH (Proxy Decline) are copied from the NEWYEAR worksheet to columns A, B & C of the export worksheet. The headers in rows one through four of NEWYEAR are NOT copied. This is the data that will be used as input for the AGEMP.XLS spreadsheet.
Appendix J3:
Detailed Instructions for Agricultural Employment Loss
CROPPRO.XLW – Worksheet Layouts (BASEYR82)

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | AE | AF | AG | AH | AI |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 |

Rows one through four contain headers. Columns A through D contain headers. Cell C1 contains Program Year.

- Cells E5 through R103 contain Production data by crop and locality. Data is obtained from Census of Agriculture and/or Annual Bulletin.
- **Cells S5 through AF103 contain formulas to distribute the statewide cash receipts by crop and locality.**

- Cells S104 through AF104 contain formulas to distribute statewide cash receipts by crop for State - Other.
- Cells S105 through AF105 are for data entry of statewide cash receipts by crop.
- Cells S106 through AG106 contain formulas to compare the statewide total to the sum of the localities.

Values of Rounded Sums from column AF.

Formulas: Round sums calculated in rows 5 - 103.

Formulas: Sum S through AE on each row.
Appendix J3:
Detailed Instructions for Agricultural Employment Loss
CROPPRO.XLW – Worksheet Layouts (DATAENTRY and VALUES)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>CPI</td>
<td>Rows one through four contain headers. Columns A through D contain headers. Cell B2 contains CPI. Cell C1 contains Program Year.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>Grain</td>
<td>Silage</td>
<td>Winter</td>
<td>Flue</td>
<td>Burley</td>
<td>Fire</td>
<td>Sun</td>
<td>Corn</td>
<td>Corn</td>
<td>Wheat</td>
<td>Oats</td>
<td>Barley</td>
<td>Soybeans</td>
<td>Peanuts</td>
<td>Cotton</td>
<td>Tobacco</td>
</tr>
<tr>
<td>5 through 26</td>
<td>FIPS</td>
<td>YEAR</td>
<td>DISTRICT</td>
<td>LOCALITY</td>
<td>Cells E5 through R26 (Central), E30 through R49 (Eastern), E53 through R67 (Northern), E71 through R83 (Northern), E87 through R95 (Southern) E99 through R116 (Southwestern), and E120 through E128 contain Production data (including District Total) by district, locality, and crop. Data is obtained from Annual Bulletin.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>rows 27, 50, 68, 84, 96, 117, and 129 contain formulas to calculate sum of locality production by district and crop.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Rows 28, 51, 69, 85, 97, 118, and 130 contain formulas to calculate discrepancy between sum of localities and district total from Annual Bulletin. (Helpful when excess production needs to be distributed to other localities.)</td>
<td></td>
</tr>
<tr>
<td>30 through 131</td>
<td>FIPS</td>
<td>YEAR</td>
<td>DISTRICT</td>
<td>LOCALITY</td>
<td>Rows 29, 52, 70, 86, 98, 119, and 131 contain formulas to verify that discrepancy between sum of localities and district total from Annual Bulletin has been successfully distributed.</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Row 132 contains data for State-Other.</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Row 133 contains formulas to sum the District Totals and the State-Other data. These should match the Annual Bulletin totals.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix J3: Detailed Instructions for Agricultural Employment Loss
CROPPRO.XLW – Worksheet Layouts (NEWYEAR)

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | AE | AF | AG | AH | AI |
| 1 | 2 | 3 | 4 |

Rows one through four contain headers. Columns A through D contain headers. Cell C1 contains Program Year.

Cells E5 through R103 contain Production data by crop and locality. Data is copied from DATAENTRY to VALUES and then to SORT, where it is sorted by FIPS. Sorted data is copied to the same cells on NEWYEAR.

Cells S5 through AF103 contain formulas to distribute the statewide cash receipts by crop and locality.

Cells E104 through R104 contain Production data by crop for State - Other.

Cells S104 through AF104 contain formulas to distribute statewide cash receipts by crop for State - Other.

Cells E105 through R105 contain Production data by crop for Statewide.

Cells S105 through AF105 are for data entry of statewide cash receipts by crop.

Cells E106 through R106 contain formulas to compare the statewide total to the sum of the localities.

1/ Cell AG106 sums AG5 through AG103 (locality production values after State-Other has been shared out where possible).

2/ Cell AH106 sums declines in AH5 - AH104 & should exceed AH105 since localities with increase show a decline of zero.

4/ Cell AG107 adds AF105 (State peaches) to AG106; conditional formatting turns red if AG107 is NOT within FIVE of AG106.
Appendix J4:
Detailed Instructions for Agricultural Employment Loss
CROPPRO.XLW Instructions
MACROS

The five macros in the CROPPRO.XLW workbook are:
Module1 - MasterMacro,
Module2 - TransferSortedDataToNewYear,
Module3 - TobaccoCashReceiptsProxies,
Module4 - CRDataEntry, and
Module5 - CropExport.

All have the same general structure. They begin with a dialog box that ends in a question. The dialog is followed by an “if” statement allowing the user to “back-out” or to proceed. “GoSub” and “Return” statements direct the flow of the macro to and from the various subroutines. Many of these subroutines contain their own dialogs, “if” statements and “GoSub” statements.

Module1 - MasterMacro:
The MasterMacro displays a dialog that explains the other macros and gives the user an option to exit the macro process before other macros are called. If the user selects to run the macros, a second dialog box is displayed to verify that the user REALLY wants to run the macros. If the user again selects YES, the macros are called in the above order. If the user selects NOT to run the macros (at either dialog box), MasterMacro closes without calling the other macros. Each of the four macros allows the user to skip that particular macro. This allows the user to run one of the macros, skip the remaining macros, and exit to verify that the data is correct. MasterMacro should then be rerun, skipping the previously run macro(s), and continuing with the next macro. While running MasterMacro, it is important to remember three things:

1. None of the macros is necessary. All of the work can be completed manually.
2. The macros may be run individually, but they MUST be completed in the proper order.
3. If a macro has been run once with satisfactory output, it is not necessary to run it again unless there has been a change on either DATAENTRY or BASEYR82.

Module2 - TransferSortedDataToNewYear:
TransferSortedDataToNewYear displays an opening dialog that allows the user to run/skip the macro. The primary subroutine (XferData:) selects the DATAENTRY worksheet and copies cells A5 through R133 to the clipboard. It then selects the VALUES worksheet and pastes (Paste Special) the clipboard data from DATAENTRY onto cells A5 through R133 of VALUES (first as formats and then as values). This preserves the font colors, leaves the results of the formulas below each district in place, but changes any formulas to numbers. Next the macro selects cells A5 through R133 on VALUES, copies them to the clipboard, then selects cells A5 through R133 on the SORT worksheet and pastes in the clipboard data (as formats and then values). It also copies the clipboard data to cells A5 through A133 as a backup. Cells A5 through R133 on SORT are again selected and then sorted (in place) by FIPS (ascending) and by District. This sort puts the locality data in rows 5 through 103, the State-Other data in row 104, the State total data in row 105 and the data created by the formulas in rows 106 through 133. Next the NEWYEAR worksheet is selected and unprotected, cells A5 through R105 are unlocked, allowing the new data to be copied from cells A5 through R105 of SORT and pasted (as formats and then as values) to cells A5 through R105 of NEWYEAR. Cells A5 through R105 of NEWYEAR are locked and the worksheet is protected.
Module3 – TobaccoCashReceiptsProxies:
TobaccoCashReceiptsProxies begins with a dialog that lets the user choose between processing the TOBACCO worksheet and skipping the macro. If the user does NOT answer YES, the macro is stopped; if the user selects YES, a subroutine (Prompt:) is called to show a second dialog asking the user if he wants to save last year’s Tobacco data. Choosing YES invokes a sub-subroutine (CopyOldStuff:) to save the old data. (Typically CopyOldStuff: needs to be run only once a year to copy the previous year’s data in cells C3 through H12 to cells C15 through H24.) After the sub-subroutine (CopyOldStuff:) is run or skipped, the subroutine (Prompt:) invokes a second and a third sub-subroutine, each of which begins with a dialog that lets the user run/skip that procedure. The second sub-subroutine (EnterProductionPrice:) shows input boxes for Tobacco production (by Type), then input boxes for Tobacco prices (by Type), and finally an input box for Tobacco Cash Receipts (for all Types combined). The third sub-subroutine (PrintWorksheet:), if invoked, prints cells A1 through H24 of the Tobacco worksheet.

Module4 – CRDataEntry:
The CRDataEntry macro begins with a dialog that asks if the user has completed the Tobacco worksheet, explains how data is entered, and then asks if the user wants to run the macro. Unless the user selects YES, the macro is skipped. If the user selects YES, the subroutine (KeyCR:) is run. After activating and unprotecting the NEWYEAR worksheet, it unlocks cells S105 through AF105. (KeyCR:) then selects each of these cells, displays a data entry input box, and calls the sub-subroutine (EnterCashReceipts:) to transform the text from the input box into a value that is saved in the cell. Cells S105 through AF105 are then locked, and NEWYEAR is protected. Before completion, the macro selects cell AG107 so the user can more easily compare the results in AG107 and AG105.

Module5 – CropExport:
The final macro begins with a dialog that asks the user if he wants to run the macro. Unless the user responds with a YES answer, the macro is skipped. A response of YES calls a subroutine (SaveCheck:) that displays a second dialog that asks the user if he wants to save the old year’s data from the EXPORT worksheet. If the user selects YES, the (SaveCheck:) subroutine calls two sub-subroutines (SaveIt:) and (Export:); if he selects NO then only one sub-subroutine (Export:) is called. If neither is selected the macro is stopped. The sub-subroutine (SaveIt:), which usually only needs to be run once a year, selects the EXPORT worksheet and unlocks cells E1 through G101. Cells A1 through C101 are then selected and copied to the clipboard; the clipboard data is then pasted (Paste Special) to cells E1 through G101 as formats and again as values. Cells E1 through G101 are selected, unlocked, and modified to set the cell background to “no color” and the cell font color to “automatic” (black). The sub-subroutine (Export:), then selects the range A5 through A105 (FIPS) and, AG5 PROXY_PRODUCTION_VALUE) through AH105 (PROXY_PRODUCTION_DECLINE), and copies the data to the clipboard. (Export:) next selects cell A1 on the EXPORT worksheet and pastes (Paste Special) the clipboard data to cells A1 through C101 as formats and again as values.
Appendix J5:
Detailed Instructions for Agricultural Employment Loss
RANCHPRO.XLS Instructions

Although the RANCHPRO.XLS workbook is similar to the CROPPRO.XLW workbook, there are some differences. Because there are only four livestock commodities and the worksheets are easier to manipulate, no macros have been created for RANCHPRO.XLS. The TOBACCO worksheet is not needed for RANCHPRO.XLS so there is one less worksheet than in CROPPRO.XLW. Since the sort order (FIPS vs. District/FIPS) on some of the worksheets of RANCHPRO.XLS is different, the SORT worksheet is located after the NEWYEAR worksheet instead of before NEWYEAR as it is in CROPPRO.XLW. There are five rows (instead of four) of header data in RANCHPRO.XLS, there is no State-Other data, and there are only two rows to check the District Totals instead of three.

On CROPPRO.XLW the first worksheet (BASEYR82) and the last two worksheets (NEWYEAR and EXPORT) are sorted by FIPS while the second and third worksheets (DATAENTRY and VALUES), are sorted by District and FIPS. The SORT worksheet is used to convert the data from VALUES to a FIPS sort (from a District/FIPS sort) before that data is copied to NEWYEAR.

On RANCHPRO.XLS the first four worksheets (BASEYR82, DATAENTRY, VALUES and NEWYEAR) are all sorted by District and FIPS. The fifth worksheet, SORT is where the data to be exported is converted from the District/FIPS sort to a FIPS sort. Only the final worksheet (EXPORT) is sorted by FIPS.

Since the SORT worksheet on RANCHPRO.XLS is only used for the three columns of data that are exported, the layout and processing is different from CROPPRO.XLW. Cells A6 through A105 (FIPS) should be copied from NEWYEAR and pasted to the same location on SORT. They should match the data in cells D6 through D106 of SORT unless there has been an addition or deletion to the FIPS codes. If columns A and D match, cells M6 through N106 on NEWYEAR should be copied to the clipboard and then pasted (Paste Special) to cells B6 through C106 of SORT (as formats and as values). Columns E and F contain formulas to round the data from columns B and C. Cells D6 through F104 to cells G6 through I104 (no Paste Special). Row 105 contains sum formulas in columns E, F, H, & I to verify that the totals are the same. Cells G6 through I104 should then be sorted by FIPS (column G). If the totals have not change in row 105, then cells G6 through I104 should be copied and pasted (no Paste Special) to cells A1 through C99 of the EXPORT worksheet.

The RANCHPRO.XLS data is now ready to be copied from EXPORT to the AGEMP worksheet of the AGEMP.XLS workbook.
Appendix J6:
Detailed Instructions for Agricultural Employment Loss
AGEMP.XLS Instructions

AGEMP
Appendix J6:
Detailed Instructions for Agricultural Employment Loss
AGEMP.XLS Instructions
Appendix K:
Detailed Instructions for Workbook WRAPMT.XLS
wrapmt
Appendix L:
Detailed instructions for Workbook ALLOCATIONSMT.XLS
allocationsmt
Appendix N:
Economically Disadvantaged Population Documentation
Appendix P:
Workforce Investment Act of 1998
(Sections 126 – 134)